Amorphous Silicon/Silicon Germanium Alloy Superlattices with Periods from 1 to 100 NM

1989 ◽  
Vol 149 ◽  
Author(s):  
J. P. Conde ◽  
V. Chu ◽  
S. Wagner

ABSTRACTThe electron and hole transport perpendicular to the plane of the layers in a-Si:H, F/a-Si, Ge:H, F multilayers is analyzed. We measure the electron dark conductivity σd and its activation energy Ea, d, the photo conductivity σph and its exponent γ, the electron and hole mobility-deep trapping lifetime (μτd)e, h and the hole mobility-recombination lifetime (μτr)h. We identify three regions of barrier thickness ds with very different transport properties: (a) ds≲50Å, dominated by tunnelling between quantum confined states in the bottom of the wells; (b) 50Å ≲ds≲200Å, in which the well acts as the provider of an extra, controllable tail state density; and (c) ds≳200Å, where the individual layers are essentially decoupled.

2003 ◽  
Vol 762 ◽  
Author(s):  
J. David Cohen

AbstractThis paper first briefly reviews a few of the early studies that established some of the salient features of light-induced degradation in a-Si,Ge:H. In particular, I discuss the fact that both Si and Ge metastable dangling bonds are involved. I then review some of the recent studies carried out by members of my laboratory concerning the details of degradation in the low Ge fraction alloys utilizing the modulated photocurrent method to monitor the individual changes in the Si and Ge deep defects. By relating the metastable creation and annealing behavior of these two types of defects, new insights into the fundamental properties of metastable defects have been obtained for amorphous silicon materials in general. I will conclude with a brief discussion of the microscopic mechanisms that may be responsible.


1995 ◽  
Vol 377 ◽  
Author(s):  
Tilo P. Drüsedau ◽  
Andreas N. Panckow ◽  
Bernd Schröder

ABSTRACTInvestigations on the gap state density were performed on a variety of samples of hydrogenated amorphous silicon germanium alloys (Ge fraction around 40 at%) containing different amounts of hydrogen. From subgap absorption measurements the values of the “integrated excess absorption” and the “defect absorption” were determined. Using a calibration constant, which is well established for the determination of the defect density from the integrated excess absorption of a-Si:H and a-Ge:H, it was found that the defect density is underestimated by nearly one order of magnitude. The underlying mechanisms for this discrepancy are discussed. The calibration constants for the present alloys are determined to 8.3×1016 eV−1 cnr2 and 1.7×1016 cm−2 for the excess and defect absorption, respectively. The defect density of the films was found to depend on the Urbach energy according to the law derived from Stutzmann's dangling bond - weak bond conversion model for a-Si:H. However, the model parameters - the density of states at the onset of the exponential tails N*=27×1020 eV−1 cm−3 and the position of the demarcation energy Edb-E*=0.1 eV are considerably smaller than in a-Si:H.


1988 ◽  
Author(s):  
J.P. Conde ◽  
V. Chu ◽  
S. Tanaka ◽  
D.S. Shen ◽  
S. Wagner

1989 ◽  
Vol 149 ◽  
Author(s):  
G. H. Bauer ◽  
C. E. Nebel ◽  
M. B. Schubert ◽  
G. Schumm

ABSTRACTOptical and transport studies of both cb- and vb-tail states in a-Si1−xGex:H such as subband absorption (PDS), instationary photocurrent experiments (TOF, PTS) for electrons and holes, Modulated Photocurrent Spectroscopy (MPS), and Raman scattering have been performed. The main consequences of Ge-alloying into the a-Si:H network are i) an increase in cb-tail state density at the conduction band edge and in the exponential cb- tail even for small x (O<x<0.3), accompanied by ii) a rise in deep cb-tail and midgap states which to some extent can be reduced by appropriate deposition methods; iii) at the valence band side up to x≈0.3 the tail seems not to be affected at all and for 0.3<x<0.9 the vb-tail obviously can be kept similar to that of a-Si:H (Evo≈(50–60) meV). Halfwidths of Raman TO-like modes point to the existence of a rigid Si-network in O<x<0.3 in which Ge is incorporated and to a transition at x>0.35 into a Si-Ge compound structure with maximum disorder at x≈0.5.


2010 ◽  
Vol 1270 ◽  
Author(s):  
Shabnam Shambayati ◽  
Bobak Gholamkhass ◽  
Soheil Ebadian ◽  
Steven Holdcroft ◽  
Peyman Servati

AbstractIn this study, the dark current-voltage characteristics of electron-only and hole-only poly(3-hexyl thiophene) (P3HT):[6,6]-phenyl C61-butyric acid methyl ester (PCBM) as a function of regioregularity (RR) and annealing time is investigated using the mobility edge (ME) model. This model is used to analyze the degradation of electron and hole mobilities as a function of annealing time for 93%-RR and 98%-RR P3HT:PCBM devices. The hole mobility is almost unchanged by the RR nature of P3HT and thermal annealing. The electron mobility, however, behaves differently after annealing. The electron mobility of 98%-RR devices, which is initially higher than that of the 93%-RR devices, experiences a steep decline with annealing. Based on ME analysis, this is due to an increase in trap states in the exponential tail caused by phase segregation of solid state blends of 98%-RR polymer and PCBM. The electron mobility of 93%-RR devices increases with annealing due to an optimization of nano-phase separated morphology.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2592 ◽  
Author(s):  
Funeka Matebese ◽  
Raymond Taziwa ◽  
Dorcas Mutukwa

P-type wide bandgap semiconductor materials such as CuI, NiO, Cu2O and CuSCN are currently undergoing intense research as viable alternative hole transport materials (HTMs) to the spiro-OMeTAD in perovskite solar cells (PSCs). Despite 23.3% efficiency of PSCs, there are still a number of issues in addition to the toxicology of Pb such as instability and high-cost of the current HTM that needs to be urgently addressed. To that end, copper thiocyanate (CuSCN) HTMs in addition to robustness have high stability, high hole mobility, and suitable energy levels as compared to spiro-OMeTAD HTM. CuSCN HTM layer use affordable materials, require short synthesis routes, require simple synthetic techniques such as spin-coating and doctor-blading, thus offer a viable way of developing cost-effective PSCs. HTMs play a vital role in PSCs as they can enhance the performance of a device by reducing charge recombination processes. In this review paper, we report on the current progress of CuSCN HTMs that have been reported to date in PSCs. CuSCN HTMs have shown enhanced stability when exposed to weather elements as the solar devices retained their initial efficiency by a greater percentage. The efficiency reported to date is greater than 20% and has a potential of increasing, as well as maintaining thermal stability.


2019 ◽  
Vol 61 (2) ◽  
pp. 388
Author(s):  
А.Н. Алешин ◽  
И.П. Щербаков ◽  
Д.А. Кириленко ◽  
Л.Б. Матюшкин ◽  
В.А. Мошников

Abstract—Light-emitting organic field-effect transistors (LE-FETs) on the basis of composite films that consist of perovskite nanocrystals (CsPbBr_3) embedded in a matrix of conjugated polymer—polyfluorene (PFO)—have been obtained, and their electrical and optical properties have been investigated. Output and transfer current-voltage characteristics (I-Vs) of FETs based on PFO : CsPbBr_3 films (component ratio 1 : 1) have a slight hysteresis at temperatures of 100–300 K and are characteristic of hole transport. The hole mobility is ∼3.3 and ∼1.9 cm^2/(V s) at the modes of the saturation and low fields, respectively, at 250 K and reaches ∼5 cm^2/(V s) at 100 K. It has been shown that the application of pulsed voltage to LE-FETs based on PFO : CsPbBr_3 can reduce the ionic conductivity and provide electroluminescence in this structure at 300 K.


Sign in / Sign up

Export Citation Format

Share Document