Characteristics of Metal/P+-Gaas Schottky Barrier Junction Formed by Focused-Ion-Beam Implantation

1989 ◽  
Vol 157 ◽  
Author(s):  
N. Watanabe ◽  
T. Tsukamoto ◽  
M. Okunuki

ABSTRACTBeryllium (Be) depth profiles, carrier profiles, ideality factors (deviation from thermionic emission and diffusion theory) and Schottky barrier heights of Al/p+-GaAs Schottky diodes were investigated by using focused ion beam (FIB) and de-focused ion beam (DFIB) of 40keV Be+, with dose range from 5.0×1012ions/cm2 to 3.4×1014ions/cm2. Differences of the depth profiles between FIB implantation and DFIB implantation were observed, and it was confirmed that depth profiles of the ion implantations were affected by current densities of the ion probes. The other side, it was recognized that the ideality factors and the Schottky barrier heights of the Schottky diodes were depended on effect of thermionic field emission.

1992 ◽  
Vol 260 ◽  
Author(s):  
Zs. J. Horváth

ABSTRACTSchottky diodes often exhibit anomalous current-vol tage characteristics at low temperatures (T) with T dependent ideality factors (IF) and apparent barrier heights (BH) evaluated for the thermionic emission. In this paper theoretical expressions are first presented for the T dependences of the IF and the apparent BH for the thermionic-field emission (TFE) including the bias dependence of BH. Model calculations are reported, which has been performed using these expressions, and their results are compared with the available experimental data. It is shown that the T dependence of the 1 Fs and apparent BHs often may be explained self consistently by the TFE with anomalously high characteristic energies Eoo.


2005 ◽  
Vol 483-485 ◽  
pp. 425-428 ◽  
Author(s):  
R.R Ciechonski ◽  
Samuele Porro ◽  
Mikael Syväjärvi ◽  
Rositza Yakimova

Specific on-resistance Ron estimated from current density-voltage characteristics of Schottky diodes on thick layers exhibits variations from tens of mW.cm2 to tens of W.cm2 for different doping levels. In order to understand the occurrence of high on-state resistance, Schottky barrier heights were first estimated for both forward and reverse bias with the application of thermionic emission theory and were in agreement with a literature reported values. Decrease in mobility with the temperature was observed and its dependencies of T–1.3 and T–2.0 for moderately doped and low doped samples respectively were estimated. From deep level measurements by Minority Carrier Transient Spectroscopy, an influence of shallow boron related levels and D-center on dependence of on-state resistance was observed, being more pronounced in low doped samples. Similar tendency was observed in depth profiling of Ron. This suggests a major role of boron in a compensation mechanism thus resulting in high Ron.


2008 ◽  
Vol 22 (14) ◽  
pp. 2309-2319 ◽  
Author(s):  
K. ERTURK ◽  
M. C. HACIISMAILOGLU ◽  
Y. BEKTORE ◽  
M. AHMETOGLU

The electrical characteristics of Cr / p – Si (100) Schottky barrier diodes have been measured in the temperature range of 100–300 K. The I-V analysis based on thermionic emission (TE) theory has revealed an abnormal decrease of apparent barrier height and increase of ideality factor at low temperature. The conventional Richardson plot exhibits non-linearity below 200 K with the linear portion corresponding to activation energy 0.304 eV and Richardson constant (A*) value of 5.41×10-3 Acm-2 K -2 is determined from the intercept at the ordinate of this experimental plot, which is much lower than the known value of 32 Acm-2 K -2 for p-type Si . It is demonstrated that these anomalies result due to the barrier height inhomogeneities prevailing at the metal-semiconductor interface. Hence, it has been concluded that the temperature dependence of the I-V characteristics of the Cr/p – Si Schottky barrier diode can be successfully explained on the basis of TE mechanism with a Gaussian distribution of the barrier heights. Furthermore, the value of the Richardson constant found is much closer than that obtained without considering the inhomogeneous barrier heights.


2014 ◽  
Vol 778-780 ◽  
pp. 710-713 ◽  
Author(s):  
Hamid Amini Moghadam ◽  
Sima Dimitrijev ◽  
Ji Sheng Han

This paper presents a physical model based on interface traps to explain both the larger barrier heights of practical Schottky diodes in comparison to the theoretically expected values and the appearance of a knee in the log I–V characteristics. According to this model, acceptor-type interface traps near the valance band increase the Schottky barrier height, which shifts the log I–V characteristic to higher forward-bias voltages. In addition to the acceptor traps, donor-type interface traps can appear near the conduction band, and when they do, they cause the knee in the log I–V characteristics as their energy level falls below the Fermi level and the charge associated with these traps changes from positive to neutral.


2012 ◽  
Vol 90 (1) ◽  
pp. 73-81 ◽  
Author(s):  
V. Lakshmi Devi ◽  
I. Jyothi ◽  
V. Rajagopal Reddy

In this work, we have investigated the electrical characteristics of Au–Cu–n-InP Schottky contacts by current–voltage (I–V) and capacitance–voltage (C–V) measurements in the temperature range 260–420 K in steps of 20 K. The diode parameters, such as the ideality factor, n, and zero-bias barrier height, Φb0, have been found to be strongly temperature dependent. It has been found that the zero-bias barrier height, Φb0(I–V), increases and the ideality factor, n, decreases with an increase in temperature. The forward I–V characteristics are analyzed on the basis of standard thermionic emission (TE) theory and the assumption of gaussian distribution of barrier heights, due to barrier inhomogeneities that prevail at the metal–semiconductor interface. The zero-bias barrier height Φb0 versus 1/2kT plot has been drawn to obtain the evidence of a gaussian distribution of the barrier heights. The corresponding values are Φb0 = 1.16 eV and σ0 = 159 meV for the mean barrier height and standard deviation, respectively. The modified Richardson plot has given mean barrier height, Φb0, and Richardson constant, A**, as 1.15 eV and 7.34 Acm−2K−2, respectively, which is close to the theoretical value of 9.4 Acm−2K−2. Barrier heights obtained from C–V measurements are higher than those obtained from I–V measurements. This inconsistency between Schottky barrier heights (SBHs) obtained from I–V and C–V measurements was also interpreted. The temperature dependence of the I–V characteristics of the Au–Cu–n-InP Schottky diode has been explained on the basis of TE mechanism with gaussian distribution of the SBHs.


1999 ◽  
Vol 595 ◽  
Author(s):  
M. Misra ◽  
A.V. Sampath ◽  
T.D. Moustakas

AbstractLateral and vertical electron transport parameters were investigated in lightly doped n-GaN films, grown by MBE. Diodes were fabricated by forming Schottky barriers on n--GaN films using a mesa-etched vertical geometry. Doping concentrations and barrier heights were determined, from C-V measurements, to be 8-9×1016 cm-3 and 0.95-1.0 eV respectively. Reverse saturation current densities were measured to be in the 1-10times;10-9 A/cm2 range. Using the diffusion theory of Schottky barriers, vertical mobility values were determined to be 950 cm2/V-s. Lateral mobility in films grown under similar conditions was determined by Hall effect measurements to be 150-200 cm2/V-s. The significant increase in mobility for vertical transport is attributed to reduction in electron scattering by charged dislocations.


2007 ◽  
Vol 7 (11) ◽  
pp. 4089-4093
Author(s):  
Sehan Lee ◽  
Yunseop Yu ◽  
Sungwoo Hwang ◽  
Doyeol Ahn

An equivalent circuit model of nanowire diodes is introduced. Because nanowire diodes inevitably involve a metal-semiconductor-metal structure, they consist of two metal-semiconductor contacts and one resistor in between these contacts. Our equivalent circuit consists of two Schottky diodes and one resistor. The current through the reverse-biased Schottky diode is calculated from the thermionic field emission (TFE) theory and that of the forward-biased Schottky diode is obtained from the classical thermionic emission (TE) equation. Our model is integrated into the conventional circuit simulator SPICE by a sub-circuit with TFE and TE routines. The results simulated with our model by SPICE are in good agreement with various, previously reported experimental results.


2012 ◽  
Vol 510-511 ◽  
pp. 265-270 ◽  
Author(s):  
M. Asghar ◽  
Khalid Mahmood ◽  
Adnan Ali ◽  
M.A. Hasan

In this study, the effect of polar face on Schottky barrier diodes has been investigated. Two samples of ZnO were grown hydrothermally under similar growth conditions. The Palladium (Pd) metal contacts of area 0.78 mm2were fabricated on both faces and were studied comprehensively using DLS-83 Deep Level Spectrometer over temperature range of 160K330K. The current-voltage (IV) measurements revealed that the ideality factor n and barrier height ϕBwere strongly temperature dependent for both faces (Zn and O-face) of ZnO, indicating that the thermionic emission is not the dominant process, which showed the inhomogenity in the barrier heights of grown samples. This barrier height inhomogenity was explained by applying Gaussian distribution model. The extrapolation of the linear ϕapverses n plot to n = 1 has given a homogeneous barrier height of approximately 0.88±0.01 eV and 0.76±0.01 eV for Zn and O-faces respectively. ϕapversus 1/T plot was drawn to obtain the values of mean barrier height for Zn and O-face (0.88±0.01 eV, 0.76±0.01 eV) and standard deviation (δs) (0.015±0.001 V, 0.014±0.001 V) at zero bais respectively. The value of δsfor the Zn-face is larger than O-face, showing that inhomogenity in the barrier heights is more in the sample grown along Zn-face as compared to the sample grown along O-face.


1986 ◽  
Vol 75 ◽  
Author(s):  
L. R. Harriott ◽  
K. D. Cummings ◽  
M. E. Gross ◽  
W. L. Brown ◽  
J. Linnros ◽  
...  

AbstractFine conducting features have been produced on Si and SiO2 substrates by irradiation of spin-on palladium acetate, [Pd(O2CCH3)2]3 films with a submicron focused ion beam. The exposures were made with a 20 keV Ga+, focused to a 0.2 micrometer spot. Electrical conductivity measuremnents were made on the resultant features as a function of ion dose for linewidths of one and ten micrometers. The sheet conductivity in the two cases was comparable and increased dramatically in the dose range between 2×1014 and 5×1014 ions/cm2. The conductivity of the exposed lines was further increased after heating in a hydrogen atmosphere. Measurements of carbon and oxygen content indicate that even at the highest ion doses a significant amount of organic material remains. Results are compared to those for 2 MeV He+ and Ne+ broad beam exposures. Potential applications are also discussed.


1993 ◽  
Vol 320 ◽  
Author(s):  
B.G. Svensson

ABSTRACTThe electrical properties of Cu/Si(100) and Cu3Si/Si(100) interfaces have been studied using both n- and p-type silicon samples. Current-voltage and capacitance-voltage measurements were performed in the temperature range 80-295 K in order to monitor Schottky barrier formation and electrical carrier concentration profiles. Deep-level transient spectroscopy was employed to observe Cu-related energy levels in the forbidden band gap of Si, and different ion beam analysis techniques were applied to study the interfacial reaction between Cu and Si. Emphasis is put on determination of Schottky barrier heights and their variation with temperature, dopant passivation by Cu atoms and interaction of Cu with irradiation-induced point defects in silicon.


Sign in / Sign up

Export Citation Format

Share Document