Atomic Interdiffusion in Au/Amorphous Ni-Nb/Semiconductor Systems

1982 ◽  
Vol 18 ◽  
Author(s):  
B. L. Doyle ◽  
P. S. Peercy ◽  
R. E. Thomas ◽  
J. H. Perepezko ◽  
J. D. Wiley

Backscattering measurements were performed to assess the stability of amorphous Ni-Nb for contacts of high temperature electronics. The interdiffusion of amorphous Ni-Nb and three semiconductors—silicon, GaAs and GaP—was measured to study the stability for primary metallization applications. Diffusion of gold with amorphous Ni-Nb and the same three semiconductors was also investigated in order to address diffusion barrier applications of amorphous metals. The results indicate that the use of amorphous Ni-Nb as a contact or a diffusion barrier could extend the useful operation temperature range for GaP devices to above 550°C.

2013 ◽  
Vol 2013 (HITEN) ◽  
pp. 000290-000297
Author(s):  
Thibaut Chailloux ◽  
Cyril Calvez ◽  
Pascal Bevilacqua ◽  
Dominique Planson ◽  
Dominique Tournier

The aim of this study consists in investigating the effects of electrical and thermal stresses on SiC n-p-n bipolar junction transistors (BJTs). The stability of the electrical characteristics of BJTs is inspected under switching operation, DC operation, temperature cycling and continuous thermal stress up to 225°C. While switching operation and temperature cycling for several hours lead to significant changes at 25°C, the electrical characteristics were little degraded at high temperature. Besides, DC operation and continuous thermal stress did not result in significant degradation at all, both at room temperature and at high temperature.


2015 ◽  
Vol 830-831 ◽  
pp. 367-370 ◽  
Author(s):  
D. Ramachandran ◽  
A.M. Kamalan Kirubaharan ◽  
Arul Maximus Rabel ◽  
P. Kuppusami

Ni-Cr-Fe based alloy Inconel 690 is widely used in power plant, marine, chemical and nuclear applications due to its excellent mechanical properties, resistance to thermal creep deformation, good thermal stability and resistance to corrosive and oxidizing environments. In order to study the microstructure of the alloy and the precipitates formation during thermal exposure, the alloy was subjected to in-situ high temperature X-ray diffraction technique (HT-XRD) in the temperature range 298-1273K. Results of high temperature XRD patterns show (111), (200), (220) and (311) reflections confirming the stability of fcc structure in the temperature of investigation. With increase in the temperature, a shift in peak positions towards lower 2θ values due to lattice expansion was noticed. The average thermal expansion coefficient (TEC) of the alloy increased from 1.33 x 10-5 K-1 to 1.53 x 10-5 K-1 in the temperature range 298-1273 K. Scanning electron microscopy indicates austenitic grains of sizes in the range 100-150μm and chromium carbide precipitate at grain boundaries after the HT-XRD heat treatment.


Author(s):  
E. R. Kimmel ◽  
H. L. Anthony ◽  
W. Scheithauer

The strengthening effect at high temperature produced by a dispersed oxide phase in a metal matrix is seemingly dependent on at least two major contributors: oxide particle size and spatial distribution, and stability of the worked microstructure. These two are strongly interrelated. The stability of the microstructure is produced by polygonization of the worked structure forming low angle cell boundaries which become anchored by the dispersed oxide particles. The effect of the particles on strength is therefore twofold, in that they stabilize the worked microstructure and also hinder dislocation motion during loading.


Author(s):  
N. Rozhanski ◽  
A. Barg

Amorphous Ni-Nb alloys are of potential interest as diffusion barriers for high temperature metallization for VLSI. In the present work amorphous Ni-Nb films were sputter deposited on Si(100) and their interaction with a substrate was studied in the temperature range (200-700)°C. The crystallization of films was observed on the plan-view specimens heated in-situ in Philips-400ST microscope. Cross-sectional objects were prepared to study the structure of interfaces.The crystallization temperature of Ni5 0 Ni5 0 and Ni8 0 Nb2 0 films was found to be equal to 675°C and 525°C correspondingly. The crystallization of Ni5 0 Ni5 0 films is followed by the formation of Ni6Nb7 and Ni3Nb nucleus. Ni8 0Nb2 0 films crystallise with the formation of Ni and Ni3Nb crystals. No interaction of both films with Si substrate was observed on plan-view specimens up to 700°C, that is due to the barrier action of the native SiO2 layer.


Alloy Digest ◽  
1967 ◽  
Vol 16 (10) ◽  

Abstract NICKELVAC L-605 is a double vacuum melted, cobalt-base alloy for high temperature applications. It is recommended for highly stressed parts operating in the temperature range of 1700 to 2000 F. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep and fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Co-53. Producer or source: Allvac Metals Company, A Teledyne Company.


2000 ◽  
Author(s):  
Vladimir Dmitriev ◽  
T. P. Chow ◽  
Steven P. DenBaars ◽  
Michael S. Shur ◽  
Michael G. Spencer

2020 ◽  
Vol 12 ◽  
Author(s):  
Fang Wang ◽  
Jingkai Wei ◽  
Caixia Guo ◽  
Tao Ma ◽  
Linqing Zhang ◽  
...  

Background: At present, the main problems of Micro-Electro-Mechanical Systems (MEMS) temperature detector focus on the narrow range of temperature detection, difficulty of the high temperature measurement. Besides, MEMS devices have different response characteristics for various surrounding temperature in the petrochemical and metallurgy application fields with high-temperature and harsh conditions. To evaluate the performance stability of the hightemperature MEMS devices, the real-time temperature measurement is necessary. Objective: A schottky temperature detector based on the metal/n-ZnO/n-Si structures is designed to measure high temperature (523~873K) for the high-temperature MEMS devices with large temperature range. Method: By using the finite element method (FEM), three different work function metals (Cu, Ni and Pt) contact with the n-ZnO are investigated to realize Schottky. At room temperature (298K) and high temperature (523~873K), the current densities with various bias voltages (J-V) are studied. Results: The simulation results show that the high temperature response power consumption of three schottky detectors of Cu, Ni and Pt decreases successively, which are 1.16 mW, 63.63 μW and 0.14 μW. The response temperature sensitivities of 6.35 μA/K, 0.78 μA/K, and 2.29 nA/K are achieved. Conclusion: The Cu/n-ZnO/n-Si schottky structure could be used as a high temperature detector (523~873K) for the hightemperature MEMS devices. It has a large temperature range (350K) and a high response sensitivity is 6.35 μA/K. Compared with traditional devices, the Cu/n-ZnO/n-Si Schottky structure based temperature detector has a low energy consumption of 1.16 mW, which has potential applications in the high-temperature measurement of the MEMS devices.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 581
Author(s):  
Abdulhakim A. Almajid

This study is focused on the deformation mechanism and behavior of naturally aged 7010 aluminum alloy at elevated temperatures. The specimens were naturally aged for 60 days to reach a saturated hardness state. High-temperature tensile tests for the naturally aged sample were conducted at different temperatures of 573, 623, 673, and 723 K at various strain rates ranging from 5 × 10−5 to 10−2 s−1. The dependency of stress on the strain rate showed a stress exponent, n, of ~6.5 for the low two temperatures and ~4.5 for the high two temperatures. The apparent activation energies of 290 and 165 kJ/mol are observed at the low, and high-temperature range, respectively. These values of activation energies are greater than those of solute/solvent self-diffusion. The stress exponents, n, and activation energy observed are rather high and this indicates the presence of threshold stress. This behavior occurred as a result of the dislocation interaction with the second phase particles that are existed in the alloy at the testing temperatures. The threshold stress decreases in an exponential manner as temperature increases. The true activation energy was computed by incorporating the threshold stress in the power-law relation between the stress and the strain. The magnitude of the true activation energy, Qt dropped to 234 and 102 kJ/mol at the low and high-temperature range, respectively. These values are close to that of diffusion of Zinc in Aluminum and diffusion of Magnesium in Aluminum, respectively. The Zener–Hollomon parameter for the alloy was developed as a function of effective stress. The data in each region (low and high-temperature region) coalescence in a segment line in each region.


Sign in / Sign up

Export Citation Format

Share Document