Analysis of the Physical and Chemical Factors Determining Compositional Variations in the MOCVD Growth of Indium Gallium Arsenide

1990 ◽  
Vol 204 ◽  
Author(s):  
Erik O. Einset ◽  
Klavs F. Jensen ◽  
Thomas F. Kuech

ABSTRACTWe present an analysis of compositional variations in the growth of the compound semiconductor, InxGal-xAs, by metal organic chemical vapor deposition (MOCVD). A three dimensional transport model for fluid flow, heat, and mass transfer is solved using the finite element method. The Delta Lattice Parameter (DLP) model is used to describe the thermodynamics of the solid solution, and the Hertz-Langmuir equation is used to calculate the evaporation rate of indium from the growing crystal. Wall depletion is incorporated by allowing for explicit wall deposition of In vapor throughout the reactor.Comparison of model predictions with experimental observations by MOCVD of InGaAs in a horizontal reactor suggests that transport phenomena lead to composition variations across the substrate, and that solution thermodynamics have little effect on the InAs incorporation rate at a given deposition temperature. However, thermodynamic factors appear to influence the change in indium incorporation with growth temperature.

1997 ◽  
Vol 482 ◽  
Author(s):  
H. Hirayama ◽  
S. Tanaka ◽  
P. Ramvall ◽  
Y. Aoyagi

AbstractWe demonstrate photoluminescence from self- assembling InGaN quantum dots (QDs), which are artificially fabricated on AlGaN surfaces via metal- organic chemical vapor deposition. InGaN QDs are successfully fabricated by the growth mode transition from step- flow to three dimensional island formation by using anti-surfactant silicon on AlGaN surface. The diameter and height of the fabricated InGaN QDs are estimated to be ˜10nm and ˜5nm, respectively, by an atomic- force- microscope (AFM). Indium mole fraction of InxGal−x N QDs is controlled from x=˜0.22 to ˜0.52 by varying the growth temperature of QDs. Intense photoluminescence is observed even at room temperature from InGaN QDs embedded with the GaN capping layers. In addition, the temperature- dependent energy shift of the photoluminescence peak- energy shows a localization behavior.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2450
Author(s):  
Oumaima Abouzaid ◽  
Hussein Mehdi ◽  
Mickael Martin ◽  
Jérémy Moeyaert ◽  
Bassem Salem ◽  
...  

The epitaxy of III-V semiconductors on silicon substrates remains challenging because of lattice parameter and material polarity differences. In this work, we report on the Metal Organic Chemical Vapor Deposition (MOCVD) and characterization of InAs/GaAs Quantum Dots (QDs) epitaxially grown on quasi-nominal 300 mm Ge/Si(001) and GaAs(001) substrates. QD properties were studied by Atomic Force Microscopy (AFM) and Photoluminescence (PL) spectroscopy. A wafer level µPL mapping of the entire 300 mm Ge/Si substrate shows the homogeneity of the three-stacked InAs QDs emitting at 1.30 ± 0.04 µm at room temperature. The correlation between PL spectroscopy and numerical modeling revealed, in accordance with transmission electron microscopy images, that buried QDs had a truncated pyramidal shape with base sides and heights around 29 and 4 nm, respectively. InAs QDs on Ge/Si substrate had the same shape as QDs on GaAs substrates, with a slightly increased size and reduced luminescence intensity. Our results suggest that 1.3 μm emitting InAs QDs quantum dots can be successfully grown on CMOS compatible Ge/Si substrates.


1997 ◽  
Vol 482 ◽  
Author(s):  
Christian Kisielowski ◽  
Olaf Schmidt ◽  
Jinwei Yang

AbstractA GaN/AlxGalxN multi-quantum well test structure with Al concentrations 0 ≤ xAl ≤ 1 was utilized to investigate the growth of AlxGal–xN barrier layers deposited by metal organic chemical vapor deposition (MOCVD). A transition from a two dimensional (2D) to a three dimensional (3D) growth mode was observed in AlxGa1–xN barriers with XAl ≥ 0.75. It is argued that the transition occurs because of growth at temperatures that are low compared with the materials melting points Tmelt. The resulting rough AlxGa1–xN surfaces can be planarized by overgrowth with GaN. Quantitative high resolution electron microscopy (HREM) was applied to measure composition and strain profiles across the GaN/AlxGa1−xN stacks at an atomic level. The measurements reveal a substantial variation of lattice constants at the AlxGa1−xN/GaN interfaces that is attributed to an Al accumulation.


RSC Advances ◽  
2016 ◽  
Vol 6 (88) ◽  
pp. 84794-84800 ◽  
Author(s):  
Yunhao Lin ◽  
Meijuan Yang ◽  
Wenliang Wang ◽  
Zhiting Lin ◽  
Guoqiang Li

High-quality crack-free GaN epitaxial films were successfully grown on Si(111) substrates using metal–organic chemical vapor deposition by in situ depositing SiN on a 3-dimensional (3D) GaN template.


2018 ◽  
Vol 6 (7) ◽  
pp. 1642-1650 ◽  
Author(s):  
Wenliang Wang ◽  
Yunhao Lin ◽  
Yuan Li ◽  
Xiaochan Li ◽  
Liegen Huang ◽  
...  

High-quality GaN-based light-emitting diode (LED) wafers have been grown on Si substrates by metal–organic chemical vapor deposition by designing epitaxial structures with AlN/Al0.24Ga0.76N buffer layers and a three-dimensional (3D) GaN layer.


2001 ◽  
Vol 680 ◽  
Author(s):  
Marco Schowalter ◽  
Brigitte Neubauer ◽  
Andreas Rosenauer ◽  
Dagmar Gerthsen ◽  
Oliver Schön ◽  
...  

ABSTRACTTransmission electron microscopy (TEM) has been applied to analyze the thickness and the In-concentration of InGaN layers in GaN/InGaN/GaN- and AlGaN/InGaN/AlGaN-quantum well (QW) structures. Two series of samples were grown by metal organic chemical vapor deposition varying either only the growth duration for the InGaN QW or by changing the Al- concentration in the buffer layers at unaltered InGaN growth conditions. A rising average In- concentration from 6.5 to 15.4 % and a decreasing growth rate are observed with increasing growth duration. The increase of the Al-concentration in the buffer layers from 0 to 36 % strongly affects the In-incorporation during the InGaN growth, which decreases from 17.5 to 2.5 %. All samples are characterized by an inhomogeneous In-distribution containing In-rich agglomerates with a size of only a few nanometers and less pronounced composition fluctuations on a scale of 100 nm.


2000 ◽  
Vol 623 ◽  
Author(s):  
N.L. Edleman ◽  
J.A. Belot ◽  
J.R. Babcock ◽  
A.W. Metz ◽  
M.V. Metz ◽  
...  

AbstractLanthanide oxide thin films are of increasing scientific and technological interest to the materials science community. A new class of fluorine-free, volatile, low-melting lanthanide precursors for the metal-organic chemical vapor deposition (MOCVD) of these films has been developed. Initial results from a full synthetic study of these lanthanide-organic complexes are detailed.


2004 ◽  
Vol 831 ◽  
Author(s):  
Gupta Shalini ◽  
Kang Hun ◽  
Strassburg Martin ◽  
Asghar Ali ◽  
Senawiratne Jayantha ◽  
...  

ABSTRACTThis paper reports the Metal Organic Chemical Vapor Deposition (MOCVD) growth of GaN nanostructures. The use of MOCVD allows the direct integration of these nanostructures into pre-existing device technology. The formation of GaN nanostructures grown on AlN epitaxial layers were studied as a function of growth temperature, growth rate, V-III ratio and the amount of deposited material. A wide range of temperatures from 800 °C to 1100 °C and V-III ratios from 30 to 3500 were applied to determine the optimal growth conditions for nucleation studies in a modified production reactor. Small GaN nanostructures with lateral dimensions below 50 nm and low aspect ratios were obtained using relatively low temperatures of 815 °C and extreme metal-rich growth conditions. Island densities up to 1010 cm−2 were achieved using silane as an anti-surfactant to increase the available nucleation sites. Manganese has been incorporated into these nanostructures to enhance the multifunctional ferromagnetic properties of GaMnN.


1992 ◽  
Vol 263 ◽  
Author(s):  
B.E. Ponga ◽  
J. Calas ◽  
M. Averous ◽  
T. Cloitre ◽  
O. Briot ◽  
...  

ABSTRACTIt has been recently shown that high quality ZnSe and ZnTc filns can be grown on GaAs using low temperature growth techniques such as Metal-Organic Chemical Vapor Deposition ( MOCVD). All samples: ZnSe, ZnTe, ZnSc(l−x)Tc(x) epilayers and ZnSe/ZnTc superlattices were grown using a novel zinc precursor, the Tri-Ethyl-Amine Di-Methyl-Zinc, while we used the classical precursors H2Se and Di-Isopropyl-Tellurium for selenium and tellurium. Investigation of the photoluminescence (PL) properties of ZnSc and ZnTe single layers enabled us to optimize the growth conditions of these compounds. The crystal growth conditions for mixed alloys and superlattices were determined by direct comparison to the aspect of low-temperature PL features. Strong PL spectra were obtained from these materials, suggesting us that tellurium has the ability to behave like an iso-clectronic center. At low concentration of tellurium in ZnSe, an interesting physical situation is observed, which we have interpreted in terms of extrinsic exciton “self-trapping” mechanism.


1999 ◽  
Vol 595 ◽  
Author(s):  
Z. Liliental-Weber ◽  
M. Benamara ◽  
W. Swider ◽  
J. Washburn ◽  
I. Grzegory ◽  
...  

AbstractTransmission electron microscopy has been used to study defects formed in Mg-doped GaN crystals. Three types of crystals have been studied: bulk crystals grown by a high pressure and high temperature process with Mg added to the Ga solution and two types of crystals grown by metal-organic chemical vapor deposition (MOCVD) where Mg was either delta-doped or continuously doped. Spontaneous ordering was observed in bulk crystals. The ordering consists of Mg rich planar defects on basal planes separated by 10.4 nm and occurs only for growth in the N to Ga polar direction (000 1N polarity). These planar defects exhibit the characteristics of stacking faults with a shift vector of a 1/3 [1100] +c/2 but some other features identify these defects as inversion domains. Different type of defects were formed on the opposite site of the crystal (Ga to N polar direction), where the growth rate is also an order of magnitude faster compared to the growth with N-polarity. These defects are three-dimensional: pyramidal and rectangular, empty inside with Mg segregation on internal surfaces. The same types of defects seen for the two growth polarities in the bulk crystals were also observed in the MOCVD grown GaN samples with Mg delta doping, but were not observed in the crystals where Mg was added continuously.


Sign in / Sign up

Export Citation Format

Share Document