Growth of ion implanted buried FeSi2 on Si (111) and Si (100)

1991 ◽  
Vol 235 ◽  
Author(s):  
K. Radermacher ◽  
S. Mantl ◽  
Ch. Dieker ◽  
H. Holzbrecher ◽  
W. Speier ◽  
...  

ABSTRACTBuried FeSi2 layers have been fabricated by 200 keV Fe+ implantations into (111) and (100) Si substrates. By varying the dose from 0.4 to 7.1017 Fe+ cm−2 the dependence of the Fe concentration on ion dose was investigated systematically. The samples were characterized by Rutherford backscattering spectrometry, He+ ion channeling and secondary ion mass spectroscopy. In the as-implanted state the Fe peak concentration increases lineary with dose up to ≈2.4.1017 Fe+ cm−2. Above this dose a redistribution of Fe atoms was observed as indicated by comparison of measured depth profiles with Monte-Carlo simulations of high dose implantations. The Fe peak concentration shows an unusual dose dependence after rapid thermal annealing (RTA) at 1150°C for 10 s. A minimum dose of (2.4±0.1)1017 Fe+ cm−2 for (111) Si and a slightly higher dose of (2.7±0.1).1017 Fe+ cm−2 for (100) Si is necessary to form continuous metallic αFeSi2 layers.

2000 ◽  
Vol 6 (S2) ◽  
pp. 536-537
Author(s):  
C. B. Vartuli ◽  
F. A. Stevie ◽  
L. A. Giannuzzi ◽  
T. L. Shofner ◽  
B. M. Purcell ◽  
...  

Energy Dispersive Spectrometry (EDS) is generally calibrated for quantification using elemental standards. This can introduce errors when quantifying non-elemental samples and does not provide an accurate detection limit. In addition, variations between analysis tools can lead to values that differ considerably, especially for trace elements. By creating a standard with an exact trace composition, many of the errors inherent in EDS quantification measurements can be eliminated.The standards are created by high dose ion implantation. For ions implanted into silicon, a dose of 1E16 cm-2 results in a peak concentration of approximately 1E21 cm-3 or 2% atomic. The exact concentration can be determined using other methods, such as Rutherford Backscattering Spectrometry (RBS) or Secondary Ion Mass Spectrometry (SIMS). For this study, SIMS analyses were made using a CAMECA IMS-6f magnetic sector. Measurement protocols were used that were developed for high concentration measurements, such as B and P in borophosphosilicate glass (BPSG).


1994 ◽  
Vol 354 ◽  
Author(s):  
Z. Xia ◽  
E. Ristolainen ◽  
R. Elliman ◽  
H. Ronkainen ◽  
S. Eränen ◽  
...  

AbstractRecently observations that high-dose Ge implantations into Si substrates caused the n-type carrier concentration to increase were attributed to residual structural defects after activation annealing [7,12]. However, co-implantation of an n-type impurity is another possibility. The origin of this excess donor concentration has been studied in this work. The possibilities of residual defects versus implantation of impurities have been investigated using two different implanters and materials analysis. Comparison of data from different implanters showed that the concentration of excess donors was sensitive to the implanter configuration. Furthermore, transmission electron microscopy (TEM), Rutherford backscattering channeling (RBS-C), and spreading resistance profiling (SRP) data showed that the excess donor effect was related to impurities rather than residual defects. Secondary-ion mass spectroscopy (SIMS) and SRP measurements confirmed that impurities such as 75As ions were present after implants. This impurity easily explains the excess donor concentration when 75Ge implants are performed into silicon wafers doped with phosphorous.


1998 ◽  
Vol 513 ◽  
Author(s):  
M. Janson ◽  
M. K. Linnarsson ◽  
A. Hallén ◽  
B. G. Svensson

ABSTRACTEpitaxial layers of low doped 4H-SiC are implanted with 20 keV 2H+ ions to a dose of 1×1015 cm−2. The samples are subsequently annealed at temperatures ranging from 1040 to 1135 °C. Secondary ion mass spectrometry is used to obtain the concentration versus depth profiles of the atomic deuterium in the samples. It is found that the concentration of implanted deuterium decreases rapidly in the samples as a function of anneal time.The experimental data are explained by a model where the deuterium migrates rapidly and becomes trapped and de-trapped at implantation-induced defects which exhibit a slightly shallower depth distribution than the implanted deuterium ions. Computer simulations using this model, in which the damage profile is taken from Monte Carlo simulations and the surface is treated as a perfect sink for the diffusing deuterium atoms, are performed with good results compared to the experimental data. The complexes are tentatively identified as carbon-deuterium at a Si-vacancy and a dissociation energy (ED) of approximately 4.9 eV is extracted for the deuterium-vacancy complexes.


1988 ◽  
Vol 100 ◽  
Author(s):  
Kazuo Yoshida ◽  
Kazuhiko Okuno ◽  
Gen Katagiri ◽  
Akira Ishitani ◽  
Katsuo Takahashi ◽  
...  

ABSTRACTWear properties of Li+, K+, C+, Cl+, and Ti+ implanted glassy carbons (GC) have been studied by wear tests using silicon carbide abrasive paper. It has been found that ion implantation is effective for improving wear resistance of GC. The measurements of Raman spectra revealed formation of an amorphous structure on the surface. Anomalous depth profiles with flat concentration distribution of Li and K atoms were observed by a secondary ion mass spectroscopy (SIMS). In conclusion. the formation of an amorphous structure seems to explain the improvement in wear resistance.


2014 ◽  
Vol 662 ◽  
pp. 115-118
Author(s):  
Jian Hua Yang ◽  
Xing Jian Ma

Monte Carlo computer simulations based on the binary collision approximation, TRIDYN program, have been applied to calculate the concentration depth profiles of implanted multi-charged molybdenum ions in H13 steel. The sputtering effect of a high dose ion implantation and influence of multi-charged ions on the concentration depth profile of implanted molybdenum ions can both be considered in the TRIDYN simulation. For the Monte Carlo computer simulation, the chosen pseudo-projectiles are 500000. The chosen extraction voltages are 48kV and 25kV, respectively, and an implantation doses of 5×1017cm-2 to compare the results which have been published related to molybdenum ion implantation. TRIDYN program is better than SRIM program in the calculation of the concentration depth profiles of implanted multi-charged ions. And the calculation result of the TRIDYN program is different from the experiment result. The other factors of affecting the concentration depth profile have also been discussed finally.


2005 ◽  
Vol 891 ◽  
Author(s):  
Yong Seok Suh ◽  
Malcolm S. Carroll ◽  
Roland A. Levy ◽  
Gabriele Bisognin ◽  
Davide De Salvador ◽  
...  

ABSTRACTThe effect of increasing boron or phosphorus implant dose (i.e., 5×1013-5×1016 cm−2) and subsequent annealing (400-600°C for 3 hrs in N2) on the activation, diffusion and structure of germanium is studied in this work. The peak concentration of implant dose is ∼ 2×1021 cm−3. Secondary ion mass spectrometry (SIMS), spreading resistance profiling (SRP), high resolution X-ray diffraction (HRXRD), X-ray absorption fine structure (XAFS), Rutherford backscattering spectrometry (RBS), and nuclear reaction analysis (NRA) were used to characterize the implant and activation behavior. Boron is found to have a high solid solubility (i.e., > 2×1020 cm−3), even immediately after implant; while in contrast, phosphorus is limited to ∼ 1–2×1019 cm−3. Diffusion of phosphorus is also extremely extrinsic, while boron is practically immobile.


2010 ◽  
Vol 1245 ◽  
Author(s):  
Baojun Liu ◽  
Nazir Kherani ◽  
Kevin P Chen ◽  
Tome Kosteski ◽  
Keith Leong ◽  
...  

AbstractTritiated amorphous and crystalline silicon is prepared by exposing silicon samples to tritium gas (T2) at various pressures and temperatures. Total tritium content and tritium concentration depth profiles in the tritiated samples are obtained using thermal effusion and Secondary Ion Mass Spectroscopy (SIMS) measurements. The results indicate that tritium incorporation is a function of the material microstructure rather than the tritium exposure condition. The highest tritium concentration attained in the amorphous silicon is about 20 at.% on average with a penetration depth of about 50 nm. In contrast, the tritium occluded in the c-Si is about 4 at.% with a penetration depth of about 10 nm. The tritium concentration observed in a-Si:H and c-Si is higher than reported results from post-hydrogenation experiments. The beta irradiation appears to catalyze the tritiation process and enhance the tritium dissolution in silicon material.


1988 ◽  
Vol 100 ◽  
Author(s):  
P. D. Ehni ◽  
I. L. Singer ◽  
S. M. Hues

ABSTRACTModel solute distribution studies have been performed in N-implanted Fe. Concentration-verses-depth profiles have been determined by secondary ion mass spectroscopy for Fe implanted to low fluences with isotopes 13C at 190keV and 15N at 180keV followed by 14N to high fluences. At N fluences greater than 2.5 × 1017 /cm2 dramatic changes in the 13C and 15N profiles are observed. It is proposed that these changes are caused by the lattice dilation due to precipitation of iron nitrides.


Sign in / Sign up

Export Citation Format

Share Document