Formation of buried α- and β- FeSi2 in (100) Si by high dose ion implantation

1992 ◽  
Vol 279 ◽  
Author(s):  
K. Maex ◽  
A. Lauwers ◽  
M. Van Hove ◽  
W. Vandervorst ◽  
M. Van Rossum

ABSTRACTA study on ion beam synthesis of buried α- and β-FeSi2 in >100< Si is presented. Phase formation has been investigated as a function of implant and anneal temperature. Layer characterization was performed by RBS, XRD, resistivity, spreading resistance and Hall effect measurements. Orientation effects in the layers have been observed depending on the implant temperature. Transport measurements show that die holes are the majority carriers in the semiconducting layers.

1991 ◽  
Vol 224 ◽  
Author(s):  
John L. Altrip ◽  
Alan G.R. Evans ◽  
Nigel D. Young ◽  
John R. Logan

AbstractThe electrical activation of As implanted Si has been investigated on rapid thermal annealing timescales using sheet resistance, spreading resistance and Hall Effect techniques. For high dose implants (>1015 As cm-2) differential Hall Effect and spreading resistance profiles confirm the existence of a temperature dependent electrical solubility limit. However for low dose implants, annealing schedules chosen such that the electrical solubility limit is not exceeded reveal electrical deactivation which is not accounted for in the clustering theory. Hall Effect measurements performed as a function of temperature have enabled us to reveal directly electrically inactive As which is not observable at room temperature using standard electrical techniques. The results indicate that As atoms in Si introduce deep trapping levels within the bandgap which are responsible forremoving As from the conduction process at room temperature. This temperature activated process is characterized with an activation energy of 0.4eV.


1993 ◽  
Vol 300 ◽  
Author(s):  
Tsutomu Iida ◽  
Yunosuke Makita ◽  
Shinji Kimura ◽  
Stefan Winter ◽  
Akimasa Yamada ◽  
...  

ABSTRACTLow energy (100 eV) impinging of carbon (C+) ions was made during molecular beam epitaxy (MBE) of GaAs using combined ion beam and molecular beam epitaxy (CIBMBE) technologies for the growth temperature ( Tg ) between 500 °C and 590 °C. 2 K photoluminescence (PL), Raman scattering and Hall effect measurements were made for the samples. In the PL spectra two specific emissions, “g” and [g-g], were observed which are closely associated with acceptor impurities. PL and Hall effect measurements indicate that C atoms were very efficiently introduced during MBE growth by CIBMBE and were both optically and electrically well activated as acceptors even at Tg=500 °C. The results reveal that defect-free impurity doping without subsequent annealing can be achieved by CIBMBE method.


2000 ◽  
Vol 622 ◽  
Author(s):  
Jörg K.N. Lindner ◽  
Stephanie Wenzel ◽  
Bernd Stritzker

ABSTRACTHigh-dose titanium implantations have been performed into ion beam synthesized heteroepitaxial layer systems of Si/3C-SiC/Si(100) in order to study the formation of titanium silicide layers in the silicon top layer. The structure and composition of layers was analysed using RBS, XRD, XTEM and EFTEM. The sputtering rates of 180 keV Ti ions were determined using the lower SiC/Si interface as a marker. A homogeneous surface layer with the stoichiometry of TiSi2 was formed by a nearly stoichiometric implantation and subsequent annealing. The formation of more metal-rich silicides was observed at doses where the peak Ti concentration largely exceeds the TiSi2 stoichiometry and where the total amount of Ti atoms in the top layer is greater than the amount needed to convert the entire Si top layer into TiSi2. Under these conditions, strong solid state reactions of the implanted Ti atoms with the buried SiC layer and the silicon substrate are observed.


1987 ◽  
Vol 97 ◽  
Author(s):  
Gerhard Pensl ◽  
Reinhard Helbig ◽  
Hong Zhang ◽  
Gonther Ziegler ◽  
Peter Lanig

ABSTRACTIon implantation of 14N and Rapid Isothermal Annealing (RIA) were employed to achieve n-type doping in epitaxial-grown 6H-SiC layers. The electrical properties of the implanted films were investigated by Hall effect measurements in order to optimize the annealing parameters. In comparison with standard furnace annealing (1470°C/7min), the annealing parameters for the RIA process could be considerably reduced (1050°C/4min). Based on planar technique, implanted p-n junctions were fabricated. The temperature dependence of I-V characteristics and of the quantum efficiency of photodiodes were studied. The maximum of the quantum efficiency at γ=330 nm reaches values of 35% at 400°C.


1983 ◽  
Vol 27 ◽  
Author(s):  
J.K. Hirvoney

ABSTRACTThe use of ion implantation for non-semiconductor applications has evolved steadily over the last decade. To date, industrial trials of this technology have been mainly directed at the wear reduction of steel and cobalt-cemented tungsten carbide tools by high dose nitrogen implantation. However, several other surface sensitive properties of metals such as fatigue, aqueous corrosion, and oxidation, have benefitted from either i)direct ion implantation of various ion species, ii)the use of ion beams to “intermix” a deposited thin film on steel or titanium alloy substrates, or iii)the deposition of material in conjunction with simultaneous ion bombardment.This paper will concentrate on applications that have experienced the most industrial trials, mainly high dose nitrogen implantation for reducing wear, but will present the features of the other ion beam based techniques that will make them appear particularly promising for future commercial utilization.


1994 ◽  
Vol 354 ◽  
Author(s):  
J.K.N. Lindner ◽  
A. Frohnwieser ◽  
B. Rauschenbach ◽  
B. Stritzker

AbstractHomogenous, epitaxial buried layers of 3C-SÍC have been formed in Si(100) and Si(lll) by ion beam synthesis (IBS) using 180 keV high dose C ion implantation. It is shown that an annealing temperature of 1250 °C and annealing times of 5 to 10 h are sufficient to achieve well-defined Si/SiC/Si layer systems with abrupt interfaces. The influence of dose, annealing time and temperature on the layer formation is studied. The favourable dose is observed to be dependent on the substrate orientation. IBS using 0.8 MeV C ions resulted in a buried SiC precipitate layer of variable composition.


2019 ◽  
Vol 98 ◽  
pp. 230-235 ◽  
Author(s):  
I.I. Izhnin ◽  
K.D. Mynbaev ◽  
A.V. Voitsekhovsky ◽  
A.G. Korotaev ◽  
I.I. Syvorotka ◽  
...  

2002 ◽  
Vol 17 (2) ◽  
pp. 423-430 ◽  
Author(s):  
C. Klapperich ◽  
L. Pruitt ◽  
K. Komvopoulos

The effects of energetic treatments, crosslinking, and plasma modification on the surface mechanical properties and deformation behavior of ultrahigh molecular weight polyethylene (UHMWPE) were examined in light of nanoindentation experiments performed with a surface force microscope. Samples of UHMWPE were subjected to relatively high-dose gamma irradiation, oxygen ion implantation, and argon ion beam treatment. A range of crosslinking was achieved by varying the radiation dose. In addition, low-temperature plasma treatment with hexamethyldisiloxane/O2 and C3F6 was investigated for comparison. The surface mechanical properties of the treated UHMWPE samples are compared with those of untreated UHMWPE samples used as controls. Surface adhesion measurements obtained from the nanoindentation material responses are also discussed in terms of important treatment parameters. Results demonstrate that high-dose oxygen ion implantation, argon ion beam treatment, and low-temperature C3F6 plasma modification are effective treatments for enhancing the surface mechanical properties of UHMWPE.


1989 ◽  
Vol 147 ◽  
Author(s):  
I. G. Brown ◽  
M. D. Rubin ◽  
K. M. Yu ◽  
R. Mutikainen ◽  
N. W. Cheung

AbstractWe have used high-dose metal ion implantation to ‘fine tune’ the composition of Y-Ba- Cu-O thin films. The films were prepared by either of two rf sputtering systems. One system uses three modified Varian S-guns capable of sputtering various metal powder targets; the other uses reactive rf magnetron sputtering from a single mixed-oxide stoichiometric solid target. Film thickness was typically in the range 2000–5000 A. Substrates of magnesium oxide, zirconia-buffered silicon, and strontium titanate have been used. Ion implantation was carried out using a metal vapor vacuum arc (MEVVA) high current metal ion source. Beam energy was 100–200 keV, average beam current about 1 mA, and dose up to about 1017 ions/cm2. Samples were annealed at 800 – 900°C in wet oxygen. Film composition was determined using Rutherford Backscattering Spectrometry (RBS), and the resistivity versus temperature curves were obtained using a four-point probe method. We find that the zero-resistance temperature can be greatly increased after implantation and reannealing, and that the ion beam modification technique described here provides a powerful means for optimizing the thin film superconducting properties.


Sign in / Sign up

Export Citation Format

Share Document