Sub-Micron Selective Photoluminescence in Porous Si by Focused Ion Beam Implantation

1992 ◽  
Vol 281 ◽  
Author(s):  
A. J. Steckl ◽  
J. Xu ◽  
H. C. Mogul ◽  
S. Mogren

ABSTRACTThe effect of Si doping on the formation of stain-etched porous Si and its photoluminescent properties was studied. Porous Si is obtained by purely chemical etching of crystalline Si in a solution of HF:HNO3:H2O in the ratio of 1:3:5. We have observed that an incubation time (ti) exists between the insertion of Si into the solution and the onset of porous Si production. This incubation time was found to be a strong function of hole concentration in both n- and p-Si. In p-Si, the ti decreased rapidly with increasing conductivity, whereas for n-Si the opposite (but not as pronounced) trend was found to be the case. For example in (B-doped) p-Si, ti, is only ∼0.5 min for 250 (Ω-cm)−1 but increases to ∼ 5 min for 0.2 (Ω-cm)−1. In (P-doped) n-Si substrates ti was ∼ 8 min for 0.2 (Ω-cm)−1 increasing to ∼ 10 min for 7 (Ω-cm)−1. Photoluminescence (PL) measurements of the porous Si obtained on substrates of various conductivity (p and n) show similar spectra, namely a peak at around 1.94 eV with a full width at half-maximum (FWHM) of about 0.5 eV. Based on the ti difference, we have fabricated localized photoemitting porous Si patterns by Ga+ focused ion beam (FIB) implantation doping and B+ broad beam (BB) implantation doping of n-type Si. Using 30 kV FIB Ga+ implantation, sub-micron photoemitting patterns have been obtained for the first time.

1995 ◽  
Vol 380 ◽  
Author(s):  
C. Deng ◽  
J. C. Wu ◽  
C. J. Barbero ◽  
T. W. Sigmon ◽  
M. N. Wybourne

ABSTRACTA fabrication process for sub-100 nm Ge wires on Si substrates is reported for the first time. Wires with a cross section of 6 × 57 nm2 are demonstrated. The wire structures are analyzed by atomic force (AFM), scanning electron (SEM), and transmission electron microscopy (TEM). Sample preparation for TEM is performed using a novel technique using both pre and in situ deposition of multiple protection layers using a Focused Ion Beam (FIB) micromachining system.


2001 ◽  
Vol 679 ◽  
Author(s):  
Stephen B. Cronin ◽  
Yu-Ming Lin ◽  
Oded Rabin ◽  
Marcie R. Black ◽  
Gene Dresselhaus ◽  
...  

ABSTRACTThe pressure filling of anodic alumina templates with molten bismuth has been used to synthesize single crystalline bismuth nanowires with diameters ranging from 7 to 200nm and lengths of 50μm. The nanowires are separated by dissolving the template, and electrodes are affixed to single Bi nanowires on Si substrates. A focused ion beam (FIB) technique is used first to sputter off the oxide from the nanowires with a Ga ion beam and then to deposit Pt without breaking vacuum. The resistivity of a 200nm diameter Bi nanowire is found to be only slightly greater than the bulk value, while preliminary measurements indicate that the resistivity of a 100nm diameter nanowire is significantly larger than bulk. The temperature dependence of the resistivity of a 100nm nanowire is modeled by considering the temperature dependent band parameters and the quantized band structure of the nanowires. This theoretical model is consistent with the experimental results.


2005 ◽  
Vol 19 (01n03) ◽  
pp. 447-450
Author(s):  
SANG-JAE KIM ◽  
TAKESHI HATANO

c-axis micro-bridges of La 2-x Sr x CuO 4 ( LSCO ) single crystals were fabricated by the focused-ion-beam (FIB) etching method. Small rectangular LSCO pieces were fabricated by cutting and grinding single crystals of underdoped LSCO of x=0.09. The size of LSCO single crystals between electrodes was cut to 20×40μm2 in ab-plane by using the FIB etching method. Superconductor-insulator-superconductor (SIS) like-branch structures on I-V curves of the LSCO stacks were observed for the first time. The branch structures exhibited voltage jumps of several tens mV in the range of from 1.7 K to 5 K with temperature dependence. When the temperature is changed from 5 K to 1.7 K , the critical current and the next branch split into a few of small voltage jumps with the intervals of several mV in the range of from 0.1 mV and 2.0 mV .


2004 ◽  
Vol 85 (26) ◽  
pp. 6401-6403 ◽  
Author(s):  
A. Karmous ◽  
A. Cuenat ◽  
A. Ronda ◽  
I. Berbezier ◽  
S. Atha ◽  
...  

2000 ◽  
Vol 636 ◽  
Author(s):  
Richard F. Haglund ◽  
Robert A. Weller ◽  
Cynthia E. Heiner ◽  
Matthew D. McMahon ◽  
Robert H. Magruder ◽  
...  

AbstractWe describe recent experiments in which we attempted the initial steps for fabricating twodimensional arrays of metal nanocrystals. We use a commercial pulsed-laser deposition system in concert with a focused ion beam to attempt control over both lateral and vertical dimensions at the nanometer length scale. In our experiments, regular arrays of holes typically 80 nm in diameter were drilled in Si substrates using the focused ion beam. Silver atoms were then deposited onto these substrates by pulsed laser evaporation from a metallic target in high vacuum. Under certain conditions of substrate temperature, laser pulse repetition rate, and fluence, small silver nanoclusters form preferentially around the structures previously etched in the silicon surfaces by the focused ion beam.


MRS Advances ◽  
2019 ◽  
Vol 4 (25-26) ◽  
pp. 1435-1440
Author(s):  
Azin Akbari ◽  
T. John Balk

In order to identify candidate high entropy alloys (HEAs) that have the hexagonal closed packed crystal structure, gradient thin films in the OsRuWMoRe system were deposited by sputtering from multiple elemental targets onto Si substrates. In addition to having compositional gradients, the films exhibited regions with different phases, some of which were single-phase and non-equiatomic. Such alloys have the potential to exhibit properties superior to the primarily equiatomic HEAs that have been the focus of most work in this area. To screen the phases that exist across the thin film gradient samples, a range of characterization techniques were employed, including focused ion beam and scanning electron microscopy, X-ray energy dispersive spectroscopy, X-ray diffraction and electron backscattered diffraction analysis. The combinatorial method described in this study enabled the identification of a candidate single-phase HEA that was subsequently fabricated as a bulk alloy.


1998 ◽  
Author(s):  
S.P. Zhao ◽  
H.N. Ma ◽  
S.J. Fang ◽  
G.P. Goh ◽  
J. Wang

Abstract Focused Ion Beam (FIB) technique has been widely used to directly modify device functionality by adding ion-induced conductive lines and cutting signal traces with chemical enhance etching. However, in this work, FIB technique is employed to add a 15 ohm resistor to a RF circuit to solve its oscillation problem. After the modification, the oscillation problem is solved and the performance of the RF device is improved significantly. The successful FIB application of adding a defined resistor to modify a circuit is reported in this paper for the first time.


1986 ◽  
Vol 75 ◽  
Author(s):  
L. R. Harriott ◽  
K. D. Cummings ◽  
M. E. Gross ◽  
W. L. Brown ◽  
J. Linnros ◽  
...  

AbstractFine conducting features have been produced on Si and SiO2 substrates by irradiation of spin-on palladium acetate, [Pd(O2CCH3)2]3 films with a submicron focused ion beam. The exposures were made with a 20 keV Ga+, focused to a 0.2 micrometer spot. Electrical conductivity measuremnents were made on the resultant features as a function of ion dose for linewidths of one and ten micrometers. The sheet conductivity in the two cases was comparable and increased dramatically in the dose range between 2×1014 and 5×1014 ions/cm2. The conductivity of the exposed lines was further increased after heating in a hydrogen atmosphere. Measurements of carbon and oxygen content indicate that even at the highest ion doses a significant amount of organic material remains. Results are compared to those for 2 MeV He+ and Ne+ broad beam exposures. Potential applications are also discussed.


1991 ◽  
Vol 256 ◽  
Author(s):  
A. J. Steckl ◽  
H. C. Mogul ◽  
S. Mogren

ABSTRACTA novel fabrication technique involving the use of focused ion beam (FIB) selective implantation to fabricate nanostructures on crystalline Si substrates in conjunction with anisotropic etching is described. Using this maskless & resistless approach, Si nanostructures were fabricated by FIB implantation of Ga+ at doses from 1015 to 1016/cm 2. Wet etching in KOH/IPA does not attack the implanted region, while it removes the underlying Si anisotropically, with a very low etch rate on the {111} planes. The result is a cantilever-like structure whose thickness is dependent on the implantation energy and dose. Pre-etching rapid thermal annealing at 600°C for 30 sec does not prevent structure fabrication and post-etching RTA does not affect the shape of the structures.


2015 ◽  
Vol 22 (2) ◽  
pp. 267-272 ◽  
Author(s):  
Selina Storm ◽  
Malte Ogurreck ◽  
Daniel Laipple ◽  
Christina Krywka ◽  
Manfred Burghammer ◽  
...  

The high flux density encountered in scanning X-ray nanodiffraction experiments can lead to severe radiation damage to biological samples. However, this technique is a suitable tool for investigating samples to high spatial resolution. The layered cell wall structure of softwood tracheids is an interesting system which has been extensively studied using this method. The tracheid cell has a complex geometry, which requires the sample to be prepared by cutting it perpendicularly to the cell wall axis. Focused ion beam (FIB) milling in combination with scanning electron microscopy allows precise alignment and cutting without splintering. Here, results of a scanning X-ray diffraction experiment performed on a biological sample prepared with a focused ion beam of gallium atoms are reported for the first time. It is shown that samples prepared and measured in this way suffer from the incorporation of gallium atoms up to a surprisingly large depth of 1 µm.


Sign in / Sign up

Export Citation Format

Share Document