Focused Ion Beam Application in Solving RFIC Oscillation Problem

Author(s):  
S.P. Zhao ◽  
H.N. Ma ◽  
S.J. Fang ◽  
G.P. Goh ◽  
J. Wang

Abstract Focused Ion Beam (FIB) technique has been widely used to directly modify device functionality by adding ion-induced conductive lines and cutting signal traces with chemical enhance etching. However, in this work, FIB technique is employed to add a 15 ohm resistor to a RF circuit to solve its oscillation problem. After the modification, the oscillation problem is solved and the performance of the RF device is improved significantly. The successful FIB application of adding a defined resistor to modify a circuit is reported in this paper for the first time.

2005 ◽  
Vol 19 (01n03) ◽  
pp. 447-450
Author(s):  
SANG-JAE KIM ◽  
TAKESHI HATANO

c-axis micro-bridges of La 2-x Sr x CuO 4 ( LSCO ) single crystals were fabricated by the focused-ion-beam (FIB) etching method. Small rectangular LSCO pieces were fabricated by cutting and grinding single crystals of underdoped LSCO of x=0.09. The size of LSCO single crystals between electrodes was cut to 20×40μm2 in ab-plane by using the FIB etching method. Superconductor-insulator-superconductor (SIS) like-branch structures on I-V curves of the LSCO stacks were observed for the first time. The branch structures exhibited voltage jumps of several tens mV in the range of from 1.7 K to 5 K with temperature dependence. When the temperature is changed from 5 K to 1.7 K , the critical current and the next branch split into a few of small voltage jumps with the intervals of several mV in the range of from 0.1 mV and 2.0 mV .


1995 ◽  
Vol 380 ◽  
Author(s):  
C. Deng ◽  
J. C. Wu ◽  
C. J. Barbero ◽  
T. W. Sigmon ◽  
M. N. Wybourne

ABSTRACTA fabrication process for sub-100 nm Ge wires on Si substrates is reported for the first time. Wires with a cross section of 6 × 57 nm2 are demonstrated. The wire structures are analyzed by atomic force (AFM), scanning electron (SEM), and transmission electron microscopy (TEM). Sample preparation for TEM is performed using a novel technique using both pre and in situ deposition of multiple protection layers using a Focused Ion Beam (FIB) micromachining system.


1992 ◽  
Vol 281 ◽  
Author(s):  
A. J. Steckl ◽  
J. Xu ◽  
H. C. Mogul ◽  
S. Mogren

ABSTRACTThe effect of Si doping on the formation of stain-etched porous Si and its photoluminescent properties was studied. Porous Si is obtained by purely chemical etching of crystalline Si in a solution of HF:HNO3:H2O in the ratio of 1:3:5. We have observed that an incubation time (ti) exists between the insertion of Si into the solution and the onset of porous Si production. This incubation time was found to be a strong function of hole concentration in both n- and p-Si. In p-Si, the ti decreased rapidly with increasing conductivity, whereas for n-Si the opposite (but not as pronounced) trend was found to be the case. For example in (B-doped) p-Si, ti, is only ∼0.5 min for 250 (Ω-cm)−1 but increases to ∼ 5 min for 0.2 (Ω-cm)−1. In (P-doped) n-Si substrates ti was ∼ 8 min for 0.2 (Ω-cm)−1 increasing to ∼ 10 min for 7 (Ω-cm)−1. Photoluminescence (PL) measurements of the porous Si obtained on substrates of various conductivity (p and n) show similar spectra, namely a peak at around 1.94 eV with a full width at half-maximum (FWHM) of about 0.5 eV. Based on the ti difference, we have fabricated localized photoemitting porous Si patterns by Ga+ focused ion beam (FIB) implantation doping and B+ broad beam (BB) implantation doping of n-type Si. Using 30 kV FIB Ga+ implantation, sub-micron photoemitting patterns have been obtained for the first time.


2015 ◽  
Vol 22 (2) ◽  
pp. 267-272 ◽  
Author(s):  
Selina Storm ◽  
Malte Ogurreck ◽  
Daniel Laipple ◽  
Christina Krywka ◽  
Manfred Burghammer ◽  
...  

The high flux density encountered in scanning X-ray nanodiffraction experiments can lead to severe radiation damage to biological samples. However, this technique is a suitable tool for investigating samples to high spatial resolution. The layered cell wall structure of softwood tracheids is an interesting system which has been extensively studied using this method. The tracheid cell has a complex geometry, which requires the sample to be prepared by cutting it perpendicularly to the cell wall axis. Focused ion beam (FIB) milling in combination with scanning electron microscopy allows precise alignment and cutting without splintering. Here, results of a scanning X-ray diffraction experiment performed on a biological sample prepared with a focused ion beam of gallium atoms are reported for the first time. It is shown that samples prepared and measured in this way suffer from the incorporation of gallium atoms up to a surprisingly large depth of 1 µm.


2001 ◽  
Vol 670 ◽  
Author(s):  
Yasushi Akasaka ◽  
Hiroshi Suzuki ◽  
Yuji Yokoyama ◽  
Nobuaki Yasutake ◽  
Hitomi Yasutake ◽  
...  

ABSTRACTWhisker-originated short in the self-aligned contact (SAC) W polymetal gate was directly observed for the first time. Short points between gate electrodes and poly-Si plugs in the test structure were identified by emission microscope and cross-sectional TEM samples of those points were made by using focused ion beam (FIB).Whiskers are formed during high-temperature processing such as LP-CVD SiN. We have proposed that NH3 de-oxidation step inserted in the SiN deposition sequence is effective for suppressing whisker growth. [1] In this study it was also confirmed that 600°C NH 3 pre-flow improved leakage current between gate electrode and contact plugs.


2020 ◽  
pp. jcs.252320
Author(s):  
Matthias Klose ◽  
Maximilian Scheungrab ◽  
Manja Luckner ◽  
Gerhard Wanner ◽  
Stefan Linder

Borrelia burgdorferi is the causative agent of Lyme disease, a multisystemic disorder affecting primarily skin, joints and nervous system. Successful internalization and intracellular processing of borreliae by immune cells like macrophages is decisive for the outcome of a respective infection. Here, we use for the first time focused ion beam scanning electron microscopy tomography (FIB/SEM tomography) to visualize the interaction of borreliae with primary human macrophages with high resolution. We report that interaction between macrophages and the elongated and highly motile borreliae can lead to formation of membrane tunnels that extend deeper into the host cytoplasm than the actual phagosome, most probably as a result of partial extrication of captured borreliae. We also show that membrane tubulation at borreliae-containing phagosomes, a process suggested earlier as a mechanism leading to phagosome compaction, but hard to visualize in live cell imaging, is apparently a frequent phenomenon. Finally, we demonstrate that the endoplasmic reticulum (ER) forms multiple STIM1-positive contact sites with both membrane tunnels and phagosome tubulations, confirming the important role of the ER during uptake and intracellular processing of borreliae.


1996 ◽  
Vol 428 ◽  
Author(s):  
W. C. Shih ◽  
A. Ghiti ◽  
K. S. Low ◽  
A. L. Greer ◽  
A. G. O'Neill ◽  
...  

AbstractThe development of electromigration-induced voids and hillocks in Al - 4 wt. % Cu interconnects is monitored by scanning electron microscopy during interrupted testing and is correlated directly with the actual grain configuration including precipitates. The short segments under study and their grain structures are defined and observed using focused ion beam microscopy. The Cu content in precipitate grains is swept away before electromigration damage, and at most such grains there is subsequent grain thinning. The observations are compared with the results from a computer simulation based on a finite-element calculation of self-consistent current density and temperature distributions. For the first time the simulation uses the actual grain configuration and incorporates Cu atom migration, and back-fluxes driven by stress and concentration gradients. In the simulation the grain-boundary diffusivity is taken to be independent of boundary misorientation or is varied according to randomly assigned orientations. The comparison of the voiding in these two simulated cases and the observations shows that some grain configurations are very susceptible to electromigration damage whatever the diffusivities. For most configurations, however, the misorientation dependence of grainboundary diffusivity is significant and must be included if simulations are to be realistic.


RSC Advances ◽  
2015 ◽  
Vol 5 (128) ◽  
pp. 106083-106086 ◽  
Author(s):  
Toan Dinh ◽  
Hoang-Phuong Phan ◽  
Takahiro Kozeki ◽  
Afzaal Qamar ◽  
Takahiro Namazu ◽  
...  

We report for the first time the thermoresistive property of p-type single crystalline 3C–SiC (p-3C–SiC), which was epitaxially grown on a silicon (Si) wafer, and then transferred to a glass substrate using a Focused Ion Beam (FIB) technique.


MRS Advances ◽  
2018 ◽  
Vol 3 (8-9) ◽  
pp. 487-492
Author(s):  
Nicolas J. Briot ◽  
T. John Balk

ABSTRACTCharacterizing individual ligaments’ behavior during deformation of nanoporous (np) structures remains crucial in further understanding the mechanical response of such materials. In this paper, we report, for the first time, quantifiable results describing the reorientation of ligament structure in np gold (np-Au) subjected to nanoindentation, based on characterization by electron backscatter diffraction (EBSD) orientation mapping. The analysis was performed on a cross-sectioned face at the center of an indent, after specimen preparation utilizing focused ion beam (FIB) techniques. This work provides insights into how the np structure accommodates the material volume displaced during nanoindentation, as well as the strain propagation under the indent. This new knowledge will be fundamental to optimizing utilization of the nanoindentation technique for measurement of np materials and, in particular, np thin films.


Sign in / Sign up

Export Citation Format

Share Document