“Recoil” Compressive Strength Test and the Evolution of Compressive Behavior in PAN-Based Carbon Fibers

1993 ◽  
Vol 305 ◽  
Author(s):  
Hao Jiang ◽  
S. Damodaran ◽  
A. S. Abhiraman ◽  
P. Desai ◽  
S. Kumar

AbstractThe compressive properties of PAN-based carbon fibers were measured with the tensile recoil method. The recoil fracture morphology was also examined. In addition to the axial compression, flexure during recoil affects the test results. Compressive failure may be caused by shear failure and/or bending buckling of the microfibrils/fibrils. Study of the evolution of compressive and other mechanical properties discloses that, in general, the compressive strength bears a similar tendency to the tensile strength and torsion modulus up to the carbonization temperature of 1500 °C. However, the relative rate of evolution is different. To some extent, the bending buckling mechanism may relate to the structural units which govern the tensile strength.

2020 ◽  
Vol 4 (2) ◽  
pp. 284-289
Author(s):  
Dr.Muhammad Magana Aliyu Aliyu ◽  
Nuruddeen Muhammad Musa

The use of eggshells ash for partial cement replacement in concrete has been well established in earlier studies. The effect of such partial replacement of cement with an eggshell ash and Plastiment BV-40 was investigated in this. Tests including slump test, compressive strength test, splitting tensile strength test and concrete density test were carried out on concrete in which cement was partially replaced with 0%, 5%, 10%, 15%, 20%, and 25% eggshell ash and presented. The test results indicate that eggshell ash decreases the workability of concrete. Also, for the compressive strength at 5% content, after which there is  decrease in the compressive strength with increase in the ash content. Furthermore, eggshell ash is found to increase the concrete splitting tensile strength. It was concluded that eggshell ash has the potential of being utilized in concrete as partial replacement of cement.


2018 ◽  
Vol 9 (2) ◽  
pp. 67-73
Author(s):  
M Zainul Arifin

This research was conducted to determine the value of the highest compressive strength from the ratio of normal concrete to normal concrete plus additive types of Sika Cim with a composition variation of 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1 , 50% and 1.75% of the weight of cement besides that in this study also aims to find the highest tensile strength from the ratio of normal concrete to normal concrete in the mixture of sika cim composition at the highest compressive strength above and after that added fiber wire with a size diameter of 1 mm in length 100 mm with a ratio of 1% of material weight. The concrete mix plan was calculated using the ASTM method, the matrial composition of the normal concrete mixture as follows, 314 kg / m3 cement, 789 kg / m3 sand, 1125 kg / m3 gravel and 189 liters / m3 of water at 10 cm slump, then normal concrete added variations of the composition of sika cim 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1.5%, 1.75% by weight of cement and fiber, the tests carried out were compressive strength of concrete and tensile strength of concrete, normal maintenance is soaked in fresh water for 28 days at 30oC. From the test results it was found that the normal concrete compressive strength at the age of 28 days was fc1 30 Mpa, the variation in the addition of the sika cim additive type mineral was achieved in composition 0.75% of the cement weight of fc1 40.2 Mpa 30C. Besides that the tensile strength test results were 28 days old with the addition of 1% fiber wire mineral to the weight of the material at a curing temperature of 30oC of 7.5%.


Buildings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 300
Author(s):  
Md. Safiuddin ◽  
George Abdel-Sayed ◽  
Nataliya Hearn

This paper presents the water absorption and strength properties of short carbon fiber reinforced mortar (CFRM) composite. Four CFRM composites with 1%, 2%, 3%, and 4% short pitch-based carbon fibers were produced in this study. Normal Portland cement mortar (NCPM) was also prepared for use as the control mortar. The freshly mixed mortar composites were tested for workability, wet density, and entrapped air content. In addition, the hardened mortar composites were examined for compressive strength, splitting tensile strength, flexural strength, and water absorption at the ages of 7 and 28 days. The effects of different carbon fiber contents on the tested properties were observed. Test results showed that the incorporation of carbon fibers decreased the workability and wet density, but increased the entrapped air content in mortar composite. Most interestingly, the compressive strength of CFRM composite increased up to 3% carbon fiber content and then it declined significantly for 4% fiber content, depending on the workability and compaction of the mortar. In contrast, the splitting tensile strength and flexural strength of the CFRM composite increased for all fiber contents due to the greater cracking resistance and improved bond strength of the carbon fibers in the mortar. The presence of short pitch-based carbon fibers significantly strengthened the mortar by bridging the microcracks, resisting the propagation of these minute cracks, and impeding the growth of macrocracks. Furthermore, the water absorption of CFRM composite decreased up to 3% carbon fiber content and then it increased substantially for 4% fiber content, depending on the entrapped air content of the mortar. The overall test results suggest that the mortar with 3% carbon fibers is the optimum CFRM composite based on the tested properties.


2014 ◽  
Vol 887-888 ◽  
pp. 824-829
Author(s):  
Qing Fang Lv ◽  
Ji Hong Qin ◽  
Ran Zhu

Laminated veneer lumber is taken as an object of study, and use LVL specimens of different sizes for compression test and tensile test. The goal of the experiment is to investigate the size effect on compressive strength and tensile strength as well as the influence of the secondary glued laminated face, which appears in the secondary molding processes. The results show that both compressive strength and tensile strength have the size effect apparently and the existence of the secondary glued laminated face lower the compressive strength of LVL specimens. Afterwards, the relationship between compressive strength and volume along with tensile strength and area are obtained by the test results.


Author(s):  
Edward Dinoy ◽  
Yohanes Gilbert Tampaty ◽  
Imelda Srilestari Mabuat ◽  
Joseph Alexon Sutiray Dwene

The compressive strength test is one of the technical properties or compressive strength tests that are commonly used in rock mechanics to determine the collapse point or the elasticity of rock against maximum pressure. The rock collapse point is a measure of the strength of the rock itself when the rock is no longer able to maintain its elastic properties. The purpose of this test is to find out how long the rock maintains its strength or elasticity properties when pressure is applied, and to find out the difference between the strength of compact rock and rock that has fractures when pressure is applied. Rocks that have fractures will break more easily or quickly when pressure is applied compared to compact rocks. This analysis is carried out by comparing the rock strength of each sample, both those that have fractures and compact rocks. To find out these differences, laboratory testing was carried out. The test results show the value (compressive strength test 57.76 MPa), (elastic modulus 5250.000MPa), (Poisson ratio 0.05) and the average value of rock mechanical properties test (axial 0.91), (lateral-0.279), and (volumetric 0.252) . Based on the test results above, it shows that rocks that have fractures will break more easily when pressure is applied, compared to compact rocks that have a long time in the uniaxial compressive strength test.


2020 ◽  
Vol 323 ◽  
pp. 01018
Author(s):  
Wei-Ting Lin ◽  
Lukáš Fiala ◽  
An Cheng ◽  
Michaela Petříková

In this study, the different proportions of co-fired fly ash and ground granulated blast-furnace slag were used to fully replace the cement as non-cement blended materials in a fixed water-cement ratio. The recycled fine aggregates were replaced with natural fine aggregates as 10%, 20%, 30%, 40% and 50%. The flowability, compressive strength, water absorption and scanning electron microscope observations were used as the engineered indices by adding different proportions of recycled fine aggregates. The test results indicated that the fluidity cannot be measured normally due to the increase in the proportion of recycled fine aggregates due to its higher absorbability. In the compressive strength test, the compressive strength decreased accordingly as the recycled fine aggregates increased due to the interface structure and the performance of recycled aggregates. The fine aggregates and other blended materials had poor cementation properties, resulting in a tendency for their compressive strength to decrease. However, the compressive strength can be controlled above 35 MPa of the green non-cement blended materials containing 20% recycled aggregates.


2019 ◽  
Vol 3 (2) ◽  
pp. 81-89
Author(s):  
Angga Pirman Firdaus ◽  
Jonbi

Indonesia ranks second in the world's largest plastic waste producer after China. Each year, Indonesia can contributeup to 187.2 million tons of plastic waste, while China reaches 262.9 million tons of plastic waste. Based on the data, one way to utilize plastic waste by using plastic waste as a mixture of concrete, where the plastic used is polypropylene (PP) plastic with different percentage of concrete mixture, the test includes compressive strength test and tensile concrete. The results of concrete compressive strength testing with polypropylene (PP) plastic waste mixture of 5%, 10% and 15% at age 28 in aggregate aggregate mixture decreased by 5.15%, 6.89% and 13.53%. As for the result of concrete tensile strength test with polypropylene (PP) plastic waste mixture of 5%, 10% and 15% at age 28 in crude aggregate mixture decreased 17,61%, 24,13% dan 23,24%.


1989 ◽  
Vol 4 (6) ◽  
pp. 1339-1346 ◽  
Author(s):  
C. T. Ho ◽  
D. D. L. Chung

Unidirectional and continuous carbon fiber tin-matrix composites were used for the packaging of the high-temperature superconductor YBa2Cu3O7–δ by diffusion bonding at 170 °C and 500 psi. Tin served as the adhesive and to increase the ductility, the normal-state electrical conductivity, and the thermal conductivity. Carbon fibers served to increase the strength and the modulus, both in tension along the fiber direction and in compression perpendicular to the fiber layers, though they decreased the strength in compression along the fiber direction. Carbon fibers also served to increase the thermal conductivity and the thermal fatigue resistance. At 24 vol. % fibers, the tensile strength was approximately equal to the compressive strength perpendicular to the fiber layers. With further increase of the fiber content, the tensile strength exceeded the compressive strength perpendicular to the fiber layers, reaching 134 MPa at 31 vol. % fibers. For fiber contents less than 30 vol. %, the compressive ductility perpendicular to the fiber layers exceeded that of the plain superconductor. At 30 vol. % fibers, the tensile modulus reached 15 GPa at room temperature and 27 GPa at 77 K. The tensile load was essentially sustained by the carbon fibers and the superconducting behavior was maintained after tension almost to the point of tensile fracture. Neither Tc nor Jc was affected by the composite processing.


2010 ◽  
Vol 168-170 ◽  
pp. 1325-1329
Author(s):  
Ye Ran Zhu ◽  
Jun Cai ◽  
Dong Wang ◽  
Guo Hong Huang

This paper investigates the mechanical properties (compressive strength, splitting tensile strength and flexural toughness) of polypropylene fiber reinforced self-compacting concrete (PFRSCC). The effect of the incorporation of polypropylene fiber on the mechanical properties of PFRSCC is determined. Four point bending tests on beam specimens were performed to evaluate the flexural properties of PFRSCC. Test results indicate that flexural toughness and ductility are remarkably improved by the addition of polypropylene fiber.


2014 ◽  
Vol 980 ◽  
pp. 132-136 ◽  
Author(s):  
Ahmad Baharuddin Abd Rahman ◽  
Jen Hua Ling ◽  
Zuhairi Abd Hamid ◽  
Mohd Hanim Osman ◽  
Shahrin Mohammad ◽  
...  

This paper presents the test results of proposed grouted sleeve connections under increasing tensile load. The objective of this research was to investigate splice connections that could provide tensile strength similar to the full tensile strength of the connected rebars. The parameters varied were splice types, splice length and rebar embedment length. The performance of the splice connection was evaluated based on the load-displacement, ultimate load, displacements and failure modes. The results show that the strength of splice connection depends on the bond strength between sleeve-to-grout and grout-to-rebar; the tensile strength of spliced steel bars and also the tensile strength of sleeve. It is observed that when the grout compressive strength is more than 60N/mm2and bar embedded length is at least 10 bar diameter, the splice connection in BS series is able to provide full tensile strength of the connected rebars.


Sign in / Sign up

Export Citation Format

Share Document