Hot Filament Assisted CVD of Titanium Nitride Films

1993 ◽  
Vol 327 ◽  
Author(s):  
Sadanand V. Deshpande ◽  
Erdogan Gulari

AbstractTitanium nitride thin films have been deposited using a novel Hot Filament Chemical Vapor Deposition (HFCVD) technique. In this technique, a resistively heated tungsten wire (∼1700°C) is used to decompose ammonia to obtain highly reactive nitrogen precursor species. This approach allows for low temperature deposition of nitride thin films. In the past, we have used this method to deposit good quality silicon and aluminum nitride films. Titanium nitride thin films have been deposited on Si(100) at substrate temperatures from 500°C to 600°C. These films were characterized using X-ray photoelectron spectroscopy (XPS), X-ray diffraction, Rutherford backscattering spectroscopy (RBS) and scanning electron microscopy. The effects of deposition pressure, substrate temperature and titanium chloride flow rate on film properties have been studied. TiN films with resistivities as low as 80.0 μΩ-cm have been deposited. RBS analysis indicates that the films serve as excellent diffusion barriers for copper and aluminum metallization on silicon.

1993 ◽  
Vol 335 ◽  
Author(s):  
Warren C. Hendricks ◽  
Seshu B. Desu ◽  
Chien H. Peng

AbstractTransparent and highly specular PbTiO3 thin films were deposited on sapphire, platinum and ruthenium oxide-coated silicon wafers by hot-wall metallorganic chemical vapor deposition (MOCVD). Lead bis-tetramethylheptadionate and titanium ethoxide were used as chemical precursors. Films were deposited over a range of experimental conditions. X-ray diffraction (XRD) was used to determine the phases present in the films; Scanning Electron Microscopy (SEM) was used to examine the surface morphology and Energy Dispersive Spectroscopy (EDS) was used to determine the composition. Optical spectra were obtained to confirm the highly dense and transparent nature of the films. The chemical stability of the ruthenium oxide substrates in the MOCVD environment as well as the existence of a high-temperature deposition regime for composition control are also discussed.


2002 ◽  
Vol 17 (7) ◽  
pp. 1820-1833 ◽  
Author(s):  
S. Gupta ◽  
B. R. Weiner ◽  
G. Morell

Nanocrystalline carbon (n-C) thin films were deposited on Mo substrates using methane (CH4) and hydrogen (H2) by the hot-filament chemical vapor deposition (HFCVD) technique. Process parameters relevant to the secondary nucleation rate were systematically varied (0.3–2.0% methane concentrations, 700–900 °C deposition temperatures, and continuous forward and reverse bias during growth) to study the corresponding variations in film microstructure. Standard nondestructive complementary characterization tools such as scanning electron microscopy, x-ray diffraction, atomic force microscopy, Raman spectroscopy, and x-ray photoelectron spectroscopy were utilized to obtain a coherent and comprehensive picture of the microstructure of these films. Through these studies we obtained an integral picture of the material grown and learned how to control key material properties such as surface morphology (faceted versus evenly smooth), grain size (microcrystalline versus nanocrystalline), surface roughness (from rough 150 rms to smooth 70 rms), and bonding configuration (sp3 C versus sp2 C), which result in physical properties relevant for several technological applications. These findings also indicate that there exist fundamental differences between HFCVD and microwave CVD (MWCVD) for methane concentrations above 1%, whereas some similarities are drawn among films grown by ion-beam assisted deposition, HFCVD assisted by low-energy particle bombardment, and MWCVD using noble gas in replacement of traditionally used hydrogen.


1997 ◽  
Vol 493 ◽  
Author(s):  
H. Y. Chen ◽  
J. Lin ◽  
K. L. Tan ◽  
Z. C. Feng ◽  
B. S. Kwak ◽  
...  

AbstractA series of Lead lanthanum titanate (Pb1−xLax)TiO3 thin films with different compositions of x = 0 − 0.33 have been grown on fused quartz substrates by metalorganic chemical vapor deposition (MOCVD) and analyzed by a variety of techniques including X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman scattering spectroscopy (RSS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) techniques. XPS results confirmed the film composition of (Pb1−x Lax)TiO3 and lanthanum enrichment in top surface layers. XRD indicates a preferred (100) orientation for the films with x values of 0.05–0.17, while the films with x values above 0.32 have randomly distributed orientations. A gradual change in the crystal structure from tetragonal to cubic arrangement with increasing La composition is noted. XPS data also show the variation of Ti-O, Pb-0 and La-0 bonding with the change in the La composition. The stretching vibrations corresponding to these oxygen related bonding are observed by DRIFT at 667, 826, 936 and 529 cm−1 respectively. This combined investigation on epitaxial PLT films may enhance our understanding of the ferroelectric PLT materials.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 510
Author(s):  
Yongqiang Pan ◽  
Huan Liu ◽  
Zhuoman Wang ◽  
Jinmei Jia ◽  
Jijie Zhao

SiO2 thin films are deposited by radio frequency (RF) plasma-enhanced chemical vapor deposition (PECVD) technique using SiH4 and N2O as precursor gases. The stoichiometry of SiO2 thin films is determined by the X-ray photoelectron spectroscopy (XPS), and the optical constant n and k are obtained by using variable angle spectroscopic ellipsometer (VASE) in the spectral range 380–1600 nm. The refractive index and extinction coefficient of the deposited SiO2 thin films at 500 nm are 1.464 and 0.0069, respectively. The deposition rate of SiO2 thin films is controlled by changing the reaction pressure. The effects of deposition rate, film thickness, and microstructure size on the conformality of SiO2 thin films are studied. The conformality of SiO2 thin films increases from 0.68 to 0.91, with the increase of deposition rate of the SiO2 thin film from 20.84 to 41.92 nm/min. The conformality of SiO2 thin films decreases with the increase of film thickness, and the higher the step height, the smaller the conformality of SiO2 thin films.


Author(s):  
Tianlei Ma ◽  
Marek Nikiel ◽  
Andrew G. Thomas ◽  
Mohamed Missous ◽  
David J. Lewis

AbstractIn this report, we prepared transparent and conducting undoped and molybdenum-doped tin oxide (Mo–SnO2) thin films by aerosol-assisted chemical vapour deposition (AACVD). The relationship between the precursor concentration in the feed and in the resulting films was studied by energy-dispersive X-ray spectroscopy, suggesting that the efficiency of doping is quantitative and that this method could potentially impart exquisite control over dopant levels. All SnO2 films were in tetragonal structure as confirmed by powder X-ray diffraction measurements. X-ray photoelectron spectroscopy characterisation indicated for the first time that Mo ions were in mixed valence states of Mo(VI) and Mo(V) on the surface. Incorporation of Mo6+ resulted in the lowest resistivity of $$7.3 \times 10^{{ - 3}} \Omega \,{\text{cm}}$$ 7.3 × 10 - 3 Ω cm , compared to pure SnO2 films with resistivities of $$4.3\left( 0 \right) \times 10^{{ - 2}} \Omega \,{\text{cm}}$$ 4.3 0 × 10 - 2 Ω cm . Meanwhile, a high transmittance of 83% in the visible light range was also acquired. This work presents a comprehensive investigation into impact of Mo doping on SnO2 films synthesised by AACVD for the first time and establishes the potential for scalable deposition of SnO2:Mo thin films in TCO manufacturing. Graphical abstract


Surfaces ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 106-114
Author(s):  
Yannick Hermans ◽  
Faraz Mehmood ◽  
Kerstin Lakus-Wollny ◽  
Jan P. Hofmann ◽  
Thomas Mayer ◽  
...  

Thin films of ZnWO4, a promising photocatalytic and scintillator material, were deposited for the first time using a reactive dual magnetron sputtering procedure. A ZnO target was operated using an RF signal, and a W target was operated using a DC signal. The power on the ZnO target was changed so that it would match the sputtering rate of the W target operated at 25 W. The effects of the process parameters were characterized using optical spectroscopy, X-ray diffraction, and scanning electron microscopy, including energy dispersive X-ray spectroscopy as well as X-ray photoelectron spectroscopy. It was found that stoichiometric microcrystalline ZnWO4 thin films could be obtained, by operating the ZnO target during the sputtering procedure at a power of 55 W and by post-annealing the resulting thin films for at least 10 h at 600 °C. As FTO coated glass substrates were used, annealing led as well to the incorporation of Na, resulting in n+ doped ZnWO4 thin films.


2012 ◽  
Vol 90 (1) ◽  
pp. 39-43 ◽  
Author(s):  
X. Xiang ◽  
D. Chang ◽  
Y. Jiang ◽  
C.M. Liu ◽  
X.T. Zu

Anatase TiO2 thin films are deposited on K9 glass samples at different substrate temperatures by radio frequency magnetron sputtering. N ion implantation is performed in the as-deposited TiO2 thin films at ion fluences of 5 × 1016, 1 × 1017, and 5 × 1017 ions/cm2. X-ray diffraction, atomic force microscope, X-ray photoelectron spectroscopy (XPS), and UV–visible spectrophotometer are used to characterize the films. With increasing N ion fluences, the absorption edges of anatase TiO2 films shift to longer wavelengths and the absorbance increases in the visible light region. XPS results show that the red shift of TiO2 films is due to the formation of N–Ti–O compounds. As a result, photoactivity is enhanced with increasing N ion fluence.


Cerâmica ◽  
2002 ◽  
Vol 48 (305) ◽  
pp. 38-42 ◽  
Author(s):  
M. I. B. Bernardi ◽  
E. J. H. Lee ◽  
P. N. Lisboa-Filho ◽  
E. R. Leite ◽  
E. Longo ◽  
...  

The synthesis of TiO2 thin films was carried out by the Organometallic Chemical Vapor Deposition (MOCVD) method. The influence of deposition parameters used during growth on the final structural characteristics was studied. A combination of the following experimental parameters was studied: temperature of the organometallic bath, deposition time, and temperature and substrate type. The high influence of those parameters on the final thin film microstructure was analyzed by scanning electron microscopy with electron dispersive X-ray spectroscopy, atomic force microscopy and X-ray diffraction.


Sign in / Sign up

Export Citation Format

Share Document