Assessment of Carbon Contamination in Titanium Nitride Films Deposited from the Reaction of Titanium (IV) Ciiloride and Amines

1993 ◽  
Vol 327 ◽  
Author(s):  
Keith B. Williams ◽  
Ogie Stewart ◽  
Gene P. Reck ◽  
James W. Proscia

AbstractThe reaction of titanium (IV) chloride and amines in an atmospheric pressure chemical vapor deposition (APCVD) has been previously shown to produce high quality titanium nitride films. These films were gold in appearance with high infrared reflectivity and resistivities as low as 80 microhm-cm. In the present study, the carbon content of the amines was systematically increased and the carbon levels in the films measured by XPS. For primary amines carbon contamination was not detected. Films deposited from secondary and tertiary amines had measurable carbon contamination. Correlation of carbon contamination with electrical resistivity and infrared reflectivity is discussed. Scanning electron micrographs and x-ray diffraction of the films are presented.

1996 ◽  
Vol 11 (4) ◽  
pp. 989-1001 ◽  
Author(s):  
Joshua N. Musher ◽  
Roy G. Gordon

Near stoichiometric titanium nitride (TiN) was deposited from tetrakis(dimethylamido)titanium (TDMAT) and ammonia using atmospheric pressure chemical vapor deposition. Experiments were conducted in a belt furnace; static experiments provided kinetic data and continuous operation uniformly coated 150-mm substrates. Growth rate, stoichiometry, and resistivity are examined as functions of deposition temperature (190−420 °C), ammonia flow relative to TDMAT (0−30), and total gas-flow rate (residence time 0.3−0.6 s). Films were characterized by sheet resistance measurements, Rutherford Backscattering Spectrometry, and X-Ray Photoelectron Spectrometry. Films deposited without ammonia were substoichiometric (N/Ti, 0.6−0.75), contained high levels of carbon (C/Ti = 0.25−0.40) and oxygen (O/Ti = 0.6−0.9), and grew slowly. Small amounts of ammonia (NH3/TDMAT ≥ 1) brought impurity levels down to C/Ti, 0.1 and O/Ti = 0.3−0.5. Ammonia increased the growth rates by a factor of 4−12 at temperatures below 400 °C. Films 500 Å thick had resistivities as low as 1600 μΩ-cm when deposited at 280 °C and 1500 μΩ-cm when deposited at 370 °C. Scanning electron micrographs indicate a smooth surface and poor step coverage for films deposited with high ammonia concentrations.


1990 ◽  
Vol 5 (6) ◽  
pp. 1169-1175 ◽  
Author(s):  
A. D. Berry ◽  
R. T. Holm ◽  
M. Fatemi ◽  
D. K. Gaskill

Films containing the metals copper, yttrium, calcium, strontium, barium, and bismuth were grown by organometallic chemical vapor deposition (OMCVD). Depositions were carried out at atmospheric pressure in an oxygen-rich environment using metal beta-diketonates and triphenylbismuth. The films were characterized by Auger electron spectroscopy, Nomarski and scanning electron microscopy, and x-ray diffraction. The results show that films containing yttrium consisted of Y2O3 with a small amount of carbidic carbon, those with copper and bismuth were mixtures of oxides with no detectable carbon, and those with calcium, strontium, and barium contained carbonates. Use of a partially fluorinated barium beta-diketonate gave films of BaF2 with small amounts of BaCO3.


1991 ◽  
Vol 220 ◽  
Author(s):  
F. Namavar ◽  
J. M. Manke ◽  
E. P. Kvam ◽  
M. M. Sanfacon ◽  
C. H. Perry ◽  
...  

ABSTRACTThe objective of this paper is to demonstrate the epitaxial growth of SiGe strained layers using atmospheric-pressure chemical vapor deposition (APCVD). We have grown SiGe layers with various thicknesses and Ge concentrations at temperatures ranging from 800–1000°C. The samples were studied using a variety of methods, including transmission electron microscopy (TEM), high resolution X-ray diffraction (HRXRD) and Raman spectroscopy (RS). Both HRXRD and RS results indicate that samples with about 10% Ge and a thickness of about 1000 Å are almost fully strained. TEM analyses of these samples indicate a film defect density less than 105/cm2. SIMS results indicate that the oxygen concentration in the epitaxial layers is lower than that found in CZ substrates.Our analyses also indicate that as-grown epitaxial Ge layers several microns thick have a defect density less than 107/cm2. The relatively low defect density in both SiGe and Ge layers grown on Si has been attributed to far higher dislocation glide velocity at the relatively elevated growth temperatures employed in CVD and to very good growth cleanliness.


2016 ◽  
Vol 5 (2) ◽  
pp. 56
Author(s):  
Keiji Komatsu ◽  
Pineda Marulanda David Alonso ◽  
Nozomi Kobayashi ◽  
Ikumi Toda ◽  
Shigeo Ohshio ◽  
...  

<p class="1Body">MgO films were epitaxially grown on single crystal MgO substrates by atmospheric-pressure chemical vapor deposition (CVD). Reciprocal lattice mappings and X-ray reflection pole figures were used to evaluate the crystal quality of the synthesized films and their epitaxial relation to their respective substrates. The X-ray diffraction profiles indicated that the substrates were oriented out-of-plane during MgO crystal growth. Subsequent pole figure measurements showed how all the MgO films retained the substrate in-plane orientations by expressing the same pole arrangements. The reciprocal lattice mappings indicated that the whisker film showed a relatively strong streak while the continuous film showed a weak one. Hence, highly crystalline epitaxial MgO thin films were synthesized on single crystal MgO substrates by atmospheric-pressure CVD.</p>


1991 ◽  
Vol 243 ◽  
Author(s):  
A. Greenwald ◽  
M. Horenstein ◽  
M. Ruane ◽  
W. Clouser ◽  
J. Foresi

AbstractSpire Corporation has deposited strontium-barium-niobate by chemical vapor deposition at atmospheric pressure using Ba(TMHD), Sr(TMHD), and Nb ethoxide. Deposition temperature as 550°C in an isothermal furnace. Films were deposited upon silicon (precoated with silica), platinum, sapphire, and quartz. Materials were characterized by RBS, X-ray diffraction, EDS, electron, and optical microscopy. Electrical and optical properties were measured at Boston University.


1991 ◽  
Vol 220 ◽  
Author(s):  
P. D. Agnello ◽  
T. O. Sedgwick ◽  
M. S. Goorsky ◽  
J. Ott ◽  
T. S. Kuan ◽  
...  

ABSTRACTDichlorosilanc and germane were used to grow silicon-germanium alloys at temperatures as low as 550°C at atmospheric pressure. Germanium mole fractions as high as 44% were obtained and the layers exhibit smooth surface morphology. Silicon-gcrmanium/silicon multilayers with abrupt hctero-intcrfaccs have been achieved. Cross Section Transmission Electron Microscopy, (XTEM) and High Resolution X-Ray Diffraction, (HRXRD) characterization of the hetero-interface abruptness will be presented. Recent results on two-dimensional (2-D) hole mobility structures grown by this technique will also be reported. Selective growth of silicon-germanium on oxide patterned silicon wafers was also demonstrated. A significant feature of the selective deposition is the lack of faceting at the oxide sidcwall, which has been commonly observed in high temperature silicon growth.


2007 ◽  
Vol 1040 ◽  
Author(s):  
Hiroki Iwane ◽  
Naoki Wakiya ◽  
Naonori Sakamoto ◽  
Takato Nakamura ◽  
Hisao Suzuki

AbstractEpitaxial aluminum nitride (AlN) thin films were successfully prepared on the (0001) sapphire substrate by chemical vapor deposition (CVD) using aluminum iodide (AlI3) and ammonia (NH3) under atmospheric pressure at 750 ºC. The crystallographic relationship between AlN thin films and Al2O3 substrate is in the following; AlN(0001)//Al2O3(0001) and AlN[1010]//Al2O3[1120]. Lattice parameters of AlN thin film measured by X-ray diffraction revealed that c=0.498 and a=0.311 nm, respectively. Residual stress estimated by modified sin2ψ method was 0.38 GPa in compressive stress. Cross-sectional TEM observation revealed that an interlayer lies between the AlN films and the sapphire substrate. It was suggested that relaxation of residual stress caused by the mismatching of lattice parameter and thermal expansion coefficient was brought about by the interlayer.


2002 ◽  
Vol 16 (28n29) ◽  
pp. 4302-4305 ◽  
Author(s):  
LIWEN TAN ◽  
JUN WANG ◽  
QIYUAN WANG ◽  
YUANHUAN YU ◽  
LANYING LIN

The γ- Al 2 O 3 films were grown on Si (100) substrates using the sources of TMA ( Al ( CH 3)3) and O 2 by very low-pressure chemical vapor deposition (VLP-CVD). It has been found that the γ- Al 2 O 3 film has a mirror-like surface and the RMS was about 2.5nm. And the orientation relationship was γ- Al 2 O 3(100)/ Si (100). The thickness uniformity of γ- Al 2 O 3 films for 2-inch epi-wafer was less than 5%. The X-ray diffraction (XRD) and reflection high-energy electron diffraction (RHEED) results show that the crystalline quality of the film was improved after the film was annealed at 1000°C in O 2 atmosphere. The high-frequency C-V and leakage current of Al /γ- Al 2 O 3/ Si capacitor were also measured to verify the annealing effect of the film. The results show that the dielectric constant increased from 4 to 7 and the breakdown voltage for 65-nm-thick γ- Al 2 O 3 film on silicon increases from 17V to 53V.


1993 ◽  
Vol 335 ◽  
Author(s):  
M. J. Cook ◽  
P. K. Wu ◽  
N. Patibandla ◽  
W. B. Hillig ◽  
J. B. Hudson

AbstractAluminum nitride films were deposited on Si (100) and sapphire (1102) substrates by low pressure chemical vapor deposition using the metalorganic precursor trisdimethylaluminum amide, [(CH3)2AlNH2]3. Depositions were carried out in a cold wall reactor with substrate temperatures between 500 and 700 °C and precursor temperatures between 50 and 80 °C. The films were analyzed by X-ray photoelectron spectroscopy, X-ray diffraction, optical microscopy and scanning electron microscopy. The films were generally smooth and adherent with colors ranging from transparent to opaque grey. Cracking and spallation were seen to occur at high film thickness. Deposition rates ranged from 20 to 300 Å/min and increased with both precursor and substrate temperature. Carbon concentrations were small, < 5 at. %, while oxygen concentrations were higher and showed a characteristic profile versus depth in the film. High temperature compatibility testing with sapphire/AlN/MoSi2 samples was carried out to determine film effectiveness as a fiber coating in a composite.


Sign in / Sign up

Export Citation Format

Share Document