Liquid-Liquid Phase Separation and Phase Diagrams of Simulated Fernald Waste Glasses

1993 ◽  
Vol 333 ◽  
Author(s):  
E. Wang ◽  
F. Perez-Cardenas ◽  
H. Kuang ◽  
A.C. Buechele

ABSTRACTPrevious study of crystallization behavior in heat-treated Fernald waste glasses has produced an extensive data base of crystal phases likely to appear in various composition ranges and their corresponding liquidus temperatures. In addition, we have frequently observed amorphous phase separation in these glasses and, occasionally, evidence of crystallization originating from such phase separation. These glasses contain more than 10 components. The composition ranges for the major components are: MgF2 10–26 wt%; CaO 4–27 wt%; Al2O3 3–15 wt%; SiO2 25–40 wt%. The morphology of the phase separation as observed in the Scanning Electron Microscope (SEM) is dark, spherical globules dispersed in a continuous matrix. Globules are depleted in Mg, Ca and F, and enriched in Al and Si compared to the matrix. Phase separation occurs more frequently in melts relatively higher in Si and F. A more systematic study on a simplified and simulated seven component system (Al2O3, B2O3, CaO, Fe2O3, SiO2, Na2O and MgF2) has been undertaken to determine the subliquidus miscibility gap and liquidus curve data. Glasses were formulated by varying the concentrations of MgF2, CaO, Al2O3 and SiO2 within the ranges specified above at fixed levels of Fe2O3, B2O3 and Na2O. The miscibility gap and liquidus curve were obtained by heat-treating the glass samples at different temperatures and observing any phase separation and crystallization in the SEM and the Transmission Electron Microscope (TEM). We report here the results of this study to enhance the understanding of the thermodynamic properties of multi-component silicate systems which are usually the basis of nuclear waste glasses.

2008 ◽  
Vol 8 (3) ◽  
pp. 1489-1493 ◽  
Author(s):  
R. S. Ningthoujam ◽  
V. Sudarsan ◽  
A. Vinu ◽  
P. Srinivasu ◽  
K. Ariga ◽  
...  

SnO2 nanoparticles dispersed in Eu3+ doped silica (SnO2-SiO2:Eu3+) were prepared at a low temperature (185 °C) in ethylene glycol medium. Transmission electron microscopy studies on as-prepared samples have established that SnO2 nanoparticles having size of 4.6 nm are uniformly covered by the SiO2 matrix. Significant extent of exciton mediated energy transfer between SnO2 and Eu3+ ions in heat treated SnO2-SiO2:Eu3+ samples has been attributed to the diffusion of Eu3+ ions from the SiO2 matrix to the near vicinity of SnO2 nanoparticles and its incorporation in the SnO2 matrix. On the other hand, very weak energy transfer exists for SnO2:Eu3+ nanoparticles heated at different temperatures due to the phase segregation of Eu3+ ions from the matrix.


2011 ◽  
Vol 278 ◽  
pp. 90-95
Author(s):  
Florence Pettinari-Sturmel ◽  
Mustafa Benyoucef ◽  
Joël Douin ◽  
Pierre Caron ◽  
Didier Locq ◽  
...  

In situ straining of microsamples have been carried out at different temperatures in a transmission electron microscope (TEM) to provide information about the elementary micromechanisms, which control the deformation in Ni-based superalloys at the nano and microscopic scales. The obstacles to the propagation of the dislocations have been identified and quantified when possible. The strengthening effect in the -matrix channels and the shearing of ' precipitates have been chosen to illustrate some results deduced from moving dislocation analysis. A quantitative evaluation of the stresses acting on dislocations has been performed. The shearing process of the ' precipitates at 850°C has been precisely analysed.


2014 ◽  
Vol 790-791 ◽  
pp. 473-478 ◽  
Author(s):  
Dóra Janovszky ◽  
Kinga Tomolya

The Cu-Zr-Ag system is characterized by a miscibility gap. The liquid separates into Ag-rich and Cu-Zr rich liquids. Yttrium was added to the Cu-Zr-Ag and Cu-Zr-Ag-Al systems and its influence on liquid immiscibility was studied. This alloying element has been chosen to check the effect of the heat of mixing between silver and the given element. In the case of Ag-Y system it is highly negative (-29 kJ/mol). The liquid becomes immiscible in the Cu-Zr-Ag-Y system. To the effect of Y addition the quaternary liquid decomposed into Ag-Y rich and Cu-Zr rich liquids. The Y addition increased the field of miscibility gap. An amorphous/crystalline composite with 6 mm thickness has been successfully produced by liquid-liquid separation based on preliminary calculation of its composition. The matrix was Cu38Zr48Al6Ag8 and the crystalline phases were Ag-Y rich separate spherical droplets.


Author(s):  
S C Sharma

A well-consolidated composite of Al alloy 6061 reinforced with 4, 8 and 12 wt% garnet was prepared by a liquid metallurgy technique, the composite was heat treated for different ageing durations (T6 treatment), and its mechanical properties were determined by destructive testing. The results of the study indicated that, as the garnet particle content in the composites increased, there were marked increases in the ultimate tensile strength, compressive strength and hardness but there was a decrease in the ductility. There was an improvement in the tensile strength, compressive strength, and hardness with ageing due to precipitation. Precipitation in Al alloy 6061, with and without garnet particulate reinforcement, was studied using transmission electron microscopy. The fracture behaviour of the composites was altered significantly by the presence of garnet particles and the crack propagation through the matrix, and the reinforcing particle clusters resulted in final fracture.


2010 ◽  
Vol 10 (16) ◽  
pp. 7795-7820 ◽  
Author(s):  
A. Zuend ◽  
C. Marcolli ◽  
T. Peter ◽  
J. H. Seinfeld

Abstract. Semivolatile organic and inorganic aerosol species partition between the gas and aerosol particle phases to maintain thermodynamic equilibrium. Liquid-liquid phase separation into an organic-rich and an aqueous electrolyte phase can occur in the aerosol as a result of the salting-out effect. Such liquid-liquid equilibria (LLE) affect the gas/particle partitioning of the different semivolatile compounds and might significantly alter both particle mass and composition as compared to a one-phase particle. We present a new liquid-liquid equilibrium and gas/particle partitioning model, using as a basis the group-contribution model AIOMFAC (Zuend et al., 2008). This model allows the reliable computation of the liquid-liquid coexistence curve (binodal), corresponding tie-lines, the limit of stability/metastability (spinodal), and further thermodynamic properties of multicomponent systems. Calculations for ternary and multicomponent alcohol/polyol-water-salt mixtures suggest that LLE are a prevalent feature of organic-inorganic aerosol systems. A six-component polyol-water-ammonium sulphate system is used to simulate effects of relative humidity (RH) and the presence of liquid-liquid phase separation on the gas/particle partitioning. RH, salt concentration, and hydrophilicity (water-solubility) are identified as key features in defining the region of a miscibility gap and govern the extent to which compound partitioning is affected by changes in RH. The model predicts that liquid-liquid phase separation can lead to either an increase or decrease in total particulate mass, depending on the overall composition of a system and the particle water content, which is related to the hydrophilicity of the different organic and inorganic compounds. Neglecting non-ideality and liquid-liquid phase separations by assuming an ideal mixture leads to an overestimation of the total particulate mass by up to 30% for the composition and RH range considered in the six-component system simulation. For simplified partitioning parametrizations, we suggest a modified definition of the effective saturation concentration, Cj*, by including water and other inorganics in the absorbing phase. Such a Cj* definition reduces the RH-dependency of the gas/particle partitioning of semivolatile organics in organic-inorganic aerosols by an order of magnitude as compared to the currently accepted definition, which considers the organic species only.


2000 ◽  
Vol 6 (5) ◽  
pp. 452-462 ◽  
Author(s):  
Julie M. Cairney ◽  
Robert D. Smith ◽  
Paul R. Munroe

AbstractTransmission electron microscope samples of two types of metal matrix composites were prepared using both traditional thinning methods and the more novel focused ion beam miller. Electropolishing methods were able to produce, very rapidly, thin foils where the matrix was electron transparent, but the ceramic reinforcement particles remained unthinned. Thus, it was not possible in these foils to study either the matrix-reinforcement interface or the microstructure of the reinforcement particles themselves. In contrast, both phases in the composites prepared using the focused ion beam miller thinned uniformly. The interfaces in these materials were clearly visible and the ceramic reinforcement was electron transparent. However, microstructural artifacts associated with ion beam damage were also observed. The extent of these artifacts and methods of minimizing their effect were dependent on both the materials and the milling conditions used.


2009 ◽  
Vol 633-634 ◽  
pp. 707-715 ◽  
Author(s):  
Julia Lyubimova ◽  
Jens Freudenberger ◽  
Alexandere Gaganov ◽  
Hansjörg Klauss ◽  
Ludwig Schultz

Recovery, recrystallisation and grain growth processes as well as the formation of a solid solution and the phase separation of a homogeneous material into a heterogeneous one are observed for Cu-Ag-Zr alloys heat-treated at different temperatures by means of mechanical, electrical and microstructural analyses. Heat treatments are shown to be an effective tool to enhance the strain to failure. If applied between several deformation steps the heat treatment causes an increase of both strain and strength limits.


2017 ◽  
Vol 732 ◽  
pp. 32-37 ◽  
Author(s):  
Ming He Wang ◽  
Xiao Dong Du ◽  
Yu Kun Li ◽  
Zhen Zhang ◽  
Hai Lin Su ◽  
...  

The as-cast microstructures and mechanical properties of Al-Si-Mg-Cu-Ti alloys with and without Sc were investigated by metallographic microscope, field emission scanning electron microscope, energy spectrum analysis, transmission electron microscope and universal testing machine. The result shows that adding 0.20wt.% Sc into the casting alloy can refine the grain, change the growth morphology from dendrite to fine equiaxed grain, and the morphology of eutectic Si by rough laminar structure into fine fibrous. The tensile strength of alloy with 0.20wt.% Sc is up to 304.4 MPa after T6 heat treated, which is close to that of 6061 forging aluminum alloy.


Sign in / Sign up

Export Citation Format

Share Document