Combined Structural and Optical Assessment of CVD Grown 3C-SiC/Si

1994 ◽  
Vol 339 ◽  
Author(s):  
Z. C. Feng ◽  
C. C. Tin ◽  
K. T. Yue ◽  
R. Hu ◽  
J. Williams ◽  
...  

ABSTRACTA combined structural and optical assessment of cubic (3C-) SiC thin films grown on Si (100) substrates by chemical vapor epitaxy (CVD) is presented. The CVD growth was performed at both atmospheric and low (100 Torr) pressure, using a vertical reactor. The CVD-grown 3C-SiC films with different growth time were characterized by X-ray diffraction, Raman scattering and Fourier transform infrared (FTIR) spectroscopy to be single crystalline with a high degree of crystal perfection. The film thickness was determined from FTIR spectra. Variations of X-ray, FTIR and Raman spectra with different growth conditions and film thicknesses are studied comparatively. Related problems are discussed.

2005 ◽  
Vol 862 ◽  
Author(s):  
Kanji Yasui ◽  
Jyunpei Eto ◽  
Yuzuru Narita ◽  
Masasuke Takata ◽  
Tadashi Akahane

AbstractThe crystal growth of SiC films on (100) Si and thermally oxidized Si (SiO2/Si) substrates by hot-mesh chemical vapor deposition (HMCVD) using monomethylsilane as a source gas was investigated. A mesh structure of hot tungsten (W) wire was used as a catalyzer. At substrate temperatures above 750°C and at a mesh temperature of 1600°C, 3C-SiC crystal was epitaxially grown on (100) Si substrates. From the X-ray rocking curve spectra of the (311) peak, SiC was also epitaxially grown in the substrate plane. On the basis of the X-ray diffraction (XRD) measurements, on the other hand, the growth of (100)-oriented 3C-SiC films on SiO2/Si substrates was determined to be achieved at substrate temperatures of 750-800°C, while polycrystalline SiC films, at substrate temperatures above 850°C. From the dependence of growth rate on substrate temperature and W-mesh temperature, the growth mechanism of SiC crystal by HMCVD was discussed.


2012 ◽  
Vol 490-495 ◽  
pp. 3840-3844
Author(s):  
W. Cheng ◽  
P. Han ◽  
F. Yu ◽  
L. Yu ◽  
L.H. Cheng ◽  
...  

In this work, the Si layer is deposited on the SiC complex substrate which is composed of Si(111) substrate and 3C-SiC film grown on it. These Si and 3C–SiC films grown under different temperatures in a chemical vapor deposition system are analyzed. The crystalline orientation, the crystalline quality and the conduction type of the films are measured by X-ray diffraction, Raman scattering ,Scanning electron microscope, and 1150 °C is found the optimized temperature for the epitaxial growth of SiC film grown on the carbonized layer. Measurement results also show that the epitaxial layer is n-type 3C-SiC which has the same crystalline orientation with the Si (111) substrate. Si film grown on the SiC complex substrate under the temperature of 690 °C has the best crystalline quality. This film is composed of p-type monocrystal Si and has the same crystalline orientation with the substrate.


2006 ◽  
Vol 527-529 ◽  
pp. 255-258
Author(s):  
Y. Shishkin ◽  
Yue Ke ◽  
Fei Yan ◽  
Robert P. Devaty ◽  
Wolfgang J. Choyke ◽  
...  

Hot-wall chemical vapor deposition has been used to epitaxially grow SiC layers on porous n-type 4H-SiC substrates. The growth was carried out at different speeds on porous layers of two different thicknesses. The quality of the SiC films was evaluated by X-ray diffraction and photoluminescence techniques. Based on the measurements, both the growth speed and the thickness of the porous layer buried underneath the epilayers do not appear to influence the structural integrity of the films. The intensity of the near bandedge low temperature photoluminescence appears stronger by a factor of two in films grown on porous layers.


Author(s):  
Michael Ketter ◽  
Matthias Weil

Tin(IV) trioxidotellurate(IV), SnTe3O8, is a member of the isotypic M IVTeIV 3O8 (M = Ti, Zr, Hf, Sn) series crystallizing with eight formula units per unit cell in space group Ia\overline{3}. In comparison with the previous crystal structure model of SnTe3O8 based on powder X-ray diffraction data [Meunier & Galy (1971). Acta Cryst. B27, 602–608], the current model based on single-crystal X-ray data is improved in terms of precision and accuracy. Nearly regular [SnO6] octahedra (Sn site symmetry .\overline{3}.) are situated in the voids of an oxidotellurate(IV) framework built up by corner-sharing [TeO4] bisphenoids (Te site symmetry 2..). A quantitative structural comparison revealed a very high degree of similarity for the structures with M = Ti, Zr, Sn in the M IVTe3O8 series.


2014 ◽  
Vol 70 (a1) ◽  
pp. C748-C748
Author(s):  
Ullrich Pietsch ◽  
Andreas Biermanns ◽  
Emmanouil Dimakis ◽  
Lutz Geelhaar ◽  
Anton Davydok ◽  
...  

The monolithic integration of III-V semiconductors with Si is the ideal way to combine the superior optoelectronic properties of the compound semiconductors with the mature Si technology. This integration can be realized by growing epitaxially dislocation-free III-V NWs on Si substrates either in the vapor-liquid-solid (VLS) or in the vapor-solid (VS) mode associated with the presence or absence, respectively, of group-III liquid droplets on the NW tips [1]. In this work, we investigate the correlation between the growth mode and the forming polytypes in InAs NWs grown on Si(111). The growth was performed in the molecular beam epitaxy chamber of beamline 11XU at Spring8 [2], while the structural dynamics was probed by in situ x-ray diffraction. Specifically, the time evolution of the formation of wurtzite (WZ) and zincblende (ZB) polytypes was monitored during the NW growth. Despite the As-rich growth conditions, a spontaneous build-up of liquid In on Si was found to be present in the nucleation phase, where the InAs nuclei mainly grow in the WZ phase with low number of stacking faults. Shortly after the nucleation, the liquid In is consumed by the excessive As, and the growth continues in the VS mode with an increasing density of stacking faults forming in the NW crystal. The time evolution of the liquid Indium signal (Fig. (a)) correlates well with the time evolution of wurzite growth rate (Fig (b)). The latter saturates at a time where the liquid indium disappers, i.e. where the VLS changes into the VS mode, whereas the zinc-blende polytypes grow almost continuous in both VLS and VS growth mode. The dynamics of stacking faults density was determined quantitatively by ex-situ X-ray diffraction measuring thestacking fault induced increase of the peak width of wurtzite reflections at InAs nanowire samples of different length ; i.e. growth time [3].


2016 ◽  
Vol 675-676 ◽  
pp. 53-56
Author(s):  
Supawadee Pokai ◽  
Puenisara Limnonthakul ◽  
Mati Horprathum ◽  
Sukon Kalasung ◽  
Pitak Eiamchai ◽  
...  

Zinc oxide (ZnO) nanorods (NRs) promise high potentials in several applications, such as photovoltaic device, thermoelectric device, sensor and solar cell. In this research, the vertical alignment of ZnO NRs was fabricated by hydrothermal method with various precursor concentrations and growth time on different seed layers (ZnO and Au), which deposited on silicon wafer substrate (100). The crystalline structure and morphology of ZnO NRs have been characterized by x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) techniques, respectively. The x-ray diffraction pattern shows that the prepared samples have a strong preferred orientation (002) plane. FE-SEM images of the ZnO NRs, it found that the density and aspect ratio were strongly influenced by the seed layer and precursor concentration. In addition, the aspect ratio of ZnO NRs was increased with increasing growth time. This study provides a cost effective method for the fabrication of well aligned ZnO NRs for nano-electronic devices.


1999 ◽  
Vol 14 (12) ◽  
pp. 4657-4666 ◽  
Author(s):  
Debra L. Kaiser ◽  
Mark D. Vaudin ◽  
Lawrence D. Rotter ◽  
John E. Bonevich ◽  
Igor Levin ◽  
...  

Thin films of composition (Ba,Sr)yTiO2+y with 0.43 ≤ y ≤; 1.64, were deposited by metalorganic chemical vapor deposition on (100) MgO substrates at various growth conditions. X-ray diffraction and transmission electron microscopy studies showed that the films were composed of epitaxial Ba1–xSrxTiO3 (x ≈0.06) grains and an amorphous phase. The orientation of the tetragonal Ba1–xSrxTiO3 grains (pure a axis, pure c axis, or a mix of the two) was found to be strongly dependent upon film composition. This composition dependence is explained for the majority of the Ti-rich films by an analysis of average strains in the two-phase films, assuming a compressive strain of ≈1% in the amorphous phase.


2011 ◽  
Vol 1309 ◽  
Author(s):  
Lamartine Meda ◽  
Geoffrey D. Stevens

ABSTRACTBy carefully manipulating and controlling the growth conditions, Ruthenium (Ru) and ruthenium oxide (RuO2) two-dimensional (2-D) nanostructure were self-assembled into a stack of plates on indium tin oxide coated glass substrate. The nanoplates were grown in a horizontal hot-wall metalorganic chemical vapor deposition (MOCVD) from ruthenocene. Each nanoplate has a thickness in the range of 25 - 60 nm and the average area is 1000 x 300 nm2. Each stack of nanoplates is approximately 1.2 m in height. A continuous layer of Ru and RuO2 thin film, which may serve as the growth template, is observed on the bottom of the nanoplate stacks. Field-emission scanning electron microscopy reveals that each stack of nanoplates was grown vertically aligned on the substrate and exhibited elongated shape. Structural properties which were examined by X-ray diffraction show that the nanoplates are polycrystalline.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 500
Author(s):  
Sebastian Selter ◽  
Yuliia Shemerliuk ◽  
Bernd Büchner ◽  
Saicharan Aswartham

We report optimized crystal growth conditions for the quarternary compound AgCrP2S6 by chemical vapor transport. Compositional and structural characterization of the obtained crystals were carried out by means of energy-dispersive X-ray spectroscopy and powder X-ray diffraction. AgCrP2S6 is structurally closely related to the M2P2S6 family, which contains several compounds that are under investigation as 2D magnets. As-grown crystals exhibit a plate-like, layered morphology as well as a hexagonal habitus. AgCrP2S6 crystallizes in monoclinic symmetry in the space group P2/a (No. 13). The successful growth of large high-quality single crystals paves the way for further investigations of low dimensional magnetism and its anisotropies in the future and may further allow for the manufacturing of few-layer (or even monolayer) samples by exfoliation.


Author(s):  
Nikolai N. Faleev ◽  
Christiana B. Honsberg ◽  
David J. Smith

Abstract Different epitaxial structures have been studied by high-resolution x-ray diffraction and x-ray topography, Transmission Electron Microscopy and Atomic Force Microscopy to establish correlations between epitaxial growth conditions and crystal perfection. It was confirmed that epitaxial growth under initial elastic stress inevitably leads to the creation of extended crystal defects like dislocation loops and edge dislocations in the volume of epitaxial structures, which strongly affect crystal perfection and physical properties of future devices. It was found that the type of created defects, their density and spatial distribution strongly depended on growth conditions: the value and sign of the initial elastic strain, the elastic constants of solid solutions, the temperature of deposition and growth rate, and the thickness of the epitaxial layers. All of the investigated structures were classified by their crystal perfection, using the volume density of extended defects as a parameter. It was found that the accommodation and relaxation of initial elastic stress and creation of crystal defect were up to four stages “chain” processes, necessary to stabilize the crystal structure at a level corresponding to the deterioration power of particular growth conditions.


Sign in / Sign up

Export Citation Format

Share Document