Status and Development of Nickel Aluminide (NiAl) Composites

1994 ◽  
Vol 350 ◽  
Author(s):  
R. A. Amato ◽  
J.-M. Yang

AbstractNiAl-based composites are a new class of engineering materials being developed for high temperature structural applications in oxidizing and aggressive environments. This paper discusses some of the recent advances in developing continuous fiber-reinforced polycrystalline NiAl-based composites. Several key issues including matrix alloy development, fiber development, fabrication development and mechanical behavior will be addressed.

2011 ◽  
Vol 462-463 ◽  
pp. 1-6 ◽  
Author(s):  
Tao Suo ◽  
Yu Long Li ◽  
Ming Shuang Liu

As Carbon-fiber-reinforced SiC-matrix (C/SiC) composites are widely used in high-temperature structural applications, its mechanical behavior at high temperature is important for the reliability of structures. In this paper, mechanical behavior of a kind of 2D C/SiC composite was investigated at temperatures ranging from room temperature (20C) to 600C under quasi-static and dynamic uniaxial compression. The results show the composite has excellent high temperature mechanical properties at the tested temperature range. Catastrophic brittle failure is not observed for the specimens tested at different strain rates. The compressive strength of the composite deceases only 10% at 600C if compared with that at room temperature. It is proposed that the decrease of compressive strength of the 2D C/SiC composite at high temperature is influenced mainly by release of thermal residual stresses in the reinforced carbon fiber and silicon carbon matrix and oxidation of the composite in high temperature atmosphere.


1992 ◽  
Vol 273 ◽  
Author(s):  
J. J. Petrovic ◽  
A. K. Vasudevan

ABSTRACTMoSi2 based composites represent an important new class of “high temperature structural silicides”, with significant potential for elevated temperature structural applications in the range of 1200–1600 °C in oxidizing and aggressive environments. The properties of MoSi2 which make it an attractive matrix for high temperature composites are described and the developmental history of these materials traced. Latest results on elevated temperature creep resistance, low temperature fracture toughness, and composite oxidation behavior are summarized. Important avenues for future MoSi2 based composite development are suggested.


1991 ◽  
Vol 6 (3) ◽  
pp. 505-513 ◽  
Author(s):  
J-M. Yang ◽  
S.M. Jeng

MoSi2-based composites reinforced with particles, whiskers, and continuous fibers were fabricated using hot pressing and hot isostatic pressing techniques. The microstructure, interface compatability, and interfacial properties between the reinforcements and matrix are discussed. The microstructural parameters which control the mechanical behavior of the MoSi2 composites were characterized. The need for developing a satisfactory reinforced MoSi2 composite for high-temperature structural applications is also addressed.


1986 ◽  
Vol 81 ◽  
Author(s):  
K. Vedula ◽  
J.R. Stephes

The B2 aluminides are currently being investigated for potential high temperature structural applications. Although they are not being as actively pursued as the titanium aluminides or the L12 nickel aluminide, the B2 aluminides are very attractive from density gonsiderations. Several recent reviews of the potential for aluminides are available in literature [e.g Ref. 1,2]. Table I is a comparison of the titanium, nickel and iron aluminides of interest and shows that B2 NiAl and FeAl have the major advantage of lower densities than Ni3Al and Fe3Al. In addition, the melting point of NiAl is over 200K higher than convetitional nickel based superalloys. Hence, although low density is the prime driving force, at least in NiAl a temperature advantage is also possible. Both of these aluminides have the advantage of containing very inexpensive elements. In fact, the thrust towards the B2 aluminides evolved from a program aimed at conserving strategic aerospace materials at NASA Lewis Research Center. A recent thrust at NASA Lewis Research Center has been to consider these aluminides as matrix materials for fiber reinforced composite systems.


2005 ◽  
Vol 237-240 ◽  
pp. 653-658
Author(s):  
Vijaya Agarwala ◽  
Joanna Karwan-Baczewska

Polycrystalline Ni3Al and TiAl are attractive materials for high temperature structural applications due to their stability in oxidizing and sulphidizing environment upto700 0 C. They possess significantly higher specific stiffness and similar specific strength as that of super alloys. Hence, these materials can replace super alloys for high temperature applications (~900°C). TiAl has lesser density and can be used for reducing component weight up to 50% and suitable for aerospace and automobile (high performance vehicles) sectors. The major difficulty for putting Ni3Al for engineering applications is its extremely low ductility and inter-granular fracture at ambient temperatures. TiAl, apart from the said brittleness it also suffers from high temperature corrosion. However the brittleness of these aluminides can be reduced by micro-alloying and by subjecting them to Thermo Mechanical Treatments, TMT. This paper deals with the recrystallization studies on nickel aluminides, deformed to different extents by rolling. The average grain size dependence with the % elongation is evaluated in the grain size range of 10-35micron. For the nickel aluminide deformed for 50% by rolling, the variation of resistivity and hardness with annealing time is determined. The homogenized TiAl samples were cold worked and annealed at 1000 0 C. Since the aluminide suffers from low ductility at room temperature, an arbitrary parameter, electrical resistivity, was chosen. Corresponding hardness values were also obtained. Finally a qualitative determination of ductility was made by studying the flow behavior of alloy around the hardness indentation. Thus a correlation was developed between resistivity, hardness and ductility values. It was then to some extent possible to investigate the TMT cycles on the microstructure and hence on the ductility of the TiAl without going for the actual tensile tests.


Author(s):  
B. J. Hockey

Ceramics, such as Al2O3 and SiC have numerous current and potential uses in applications where high temperature strength, hardness, and wear resistance are required often in corrosive environments. These materials are, however, highly anisotropic and brittle, so that their mechanical behavior is often unpredictable. The further development of these materials will require a better understanding of the basic mechanisms controlling deformation, wear, and fracture.The purpose of this talk is to describe applications of TEM to the study of the deformation, wear, and fracture of Al2O3. Similar studies are currently being conducted on SiC and the techniques involved should be applicable to a wide range of hard, brittle materials.


Author(s):  
D. R. Clarke ◽  
G. Thomas

Grain boundaries have long held a special significance to ceramicists. In part, this has been because it has been impossible until now to actually observe the boundaries themselves. Just as important, however, is the fact that the grain boundaries and their environs have a determing influence on both the mechanisms by which powder compaction occurs during fabrication, and on the overall mechanical properties of the material. One area where the grain boundary plays a particularly important role is in the high temperature strength of hot-pressed ceramics. This is a subject of current interest as extensive efforts are being made to develop ceramics, such as silicon nitride alloys, for high temperature structural applications. In this presentation we describe how the techniques of lattice fringe imaging have made it possible to study the grain boundaries in a number of refractory ceramics, and illustrate some of the findings.


Author(s):  
T.R. Dinger ◽  
G. Thomas

The use of Si3N4, alloys for high temperature, high stress structural applications has prompted numerous studies of the oxynitride glasses which exist as intergranular phases in their microstructures. Oxynitride glasses have been investigated recently in their bulk form in order to understand their crystallization behavior for subsequent Si3N4 applications and to investigate their worth as glass-ceramic precursors. This research investigates the crystallization sequence of a glass having a normalized composition of Y26Si30Al11 ON11 and lying in the A1N-Y2O3-SiO2 section of the Y-Si-Al-O-N system. Such glasses exist as intergranular phases in the technologically important Y2O3/Al2O3-fluxed Si3N4 alloys.


Author(s):  
G.A. Botton ◽  
C.J. Humphreys

Transition metal aluminides are of great potential interest for high temperature structural applications. Although these materials exhibit good mechanical properties at high temperature, their use in industrial applications is often limited by their intrinsic room temperature brittleness. Whilst this particular yield behaviour is directly related to the defect structure, the properties of the defects (in particular the mobility of dislocations and the slip system on which these dislocations move) are ultimately determined by the electronic structure and bonding in these materials. The lack of ductility has been attributed, at least in part, to the mixed bonding character (metallic and covalent) as inferred from ab-initio calculations. In this work, we analyse energy loss spectra and discuss the features of the near edge structure in terms of the relevant electronic states in order to compare the predictions on bonding directly with spectroscopic experiments. In this process, we compare spectra of late transition metal (TM) to early TM aluminides (FeAl and TiAl) to assess whether differences in bonding can also be detected. This information is then discussed in terms of bonding changes at grain boundaries in NiAl.


Sign in / Sign up

Export Citation Format

Share Document