Glancing Angle X-Ray Analysis of Titanium Copper Compound Formations

1984 ◽  
Vol 40 ◽  
Author(s):  
P. A. Psaras ◽  
D. Gupta

AbstractTitanium copper compound formations have been studied via Seeman Bohlin x-ray diffractometry and Rutherford backscattering spectrometry. The heat treatment temperature range was 350°C to 475°C and th heat treatment times ranged from 0 to 240 minutes. Tetragonal gamma TiCu formed first at ˜350°C and was sequentially followed by orthorhombic TiCu3 at ˜400°C. From Rutherford backscattering spectrometry analysis it was concluded that the second TiCu3 compound deviated from ideal stoichiometry to a nonstoichiometric Ti0.88Cu3.12 composition

2013 ◽  
Vol 634-638 ◽  
pp. 696-700
Author(s):  
Lin Jiu Xiao ◽  
Peng Li ◽  
Yong Gang Sheng

A series of Ti(SO4)2/γ-Al2O3 catalysts were prepared by impregnation method and the catalytic performance of these catalysts in 1-butene oligomerization was investigated. The heat treatment temperature played great influences on the catalytic performance of these catalysts in the oligomerization. 90.1 wt.% conversion of 1-butene and 92.2 wt.% selectivity of dimers were obtained on Ti(SO4)2/γ-Al2O3(450) catalyst at 80 °C, 1.0 Mpa and LHSV=0.6 h−1. The heat treatment temperature determined the crystallinity of TiOSO4 and specific surface area of these catalysts, which affected the catalytic performance of these catalysts in 1-butene oligomerization. In addition, the physicochemical properties of these catalysts were comparatively characterized by powder X-ray diffraction (XRD), N2 isothermal adsorption-desorption techniques.


2002 ◽  
Vol 731 ◽  
Author(s):  
M. S. McIntosh ◽  
T. H. Sanders ◽  
J. M. Hampikian

AbstractThe alumina-chromia system shows complete mutual solubility and is represented by an isomorphous phase diagram. However, the alumina-chromia system exhibits an asymmetric miscibility gap under 1300°C. Using existing data from the literature, the alumina-chromia system was assessed using thermodynamic modeling by Kim and Sanders [1]. Regular and subregular solution models for the liquid and solid phases were used to define the phase boundaries for the miscibility gap in this system. Using this thermodynamic representation of the miscibility gap to select temperatures of interest, 75 mole percent Al2O3samples were synthesized via combustion of powders, followed by pressing into pellets and heat-treated for various times and temperatures. Both X-ray and TEM analysis showed evidence of spinodal decomposition after heat-treatment. X-ray analysis showed that decreasing the heat-treatment temperature increases the compositional difference between the phases present. The experimentally observed microstructures exhibit lamella-like structures that vary in spacing from 8nm to 3nm as the heat-treatment temperature varies from 400°C to 800°C.


2014 ◽  
Vol 1078 ◽  
pp. 31-35
Author(s):  
Liang Zhao ◽  
Qun Hu Xue ◽  
Dong Hai Ding

MgO-Al2O3-ZrO2composite powders with 3 kinds of mass ratio were synthesized by sol–gel method using MgCl2·6H2O, AlCl3·6H2O and ZrOCl2·8H2O as starting materials, and NH3·H2O as a precipitant. The composite powders which match with zirconium oxide particle size and evenly distribute can are advantageous to the formation of metastable t-ZrO2and restrain the grain growth as the additive of modified sizing nozzle. Chemical composition, mineral phase, particle size distribution and micro-morphology of the composite powders were investigated by X-ray fluorescence instrument, X-ray diffractometer, laser particle size analyzer and scanning electron microscope. Research showed that under the process that the concentration of MgCl2solution 0.2 mol/L, AlCl3and ZrOCl2solution concentration 0.5 mol/L, the pH controlled between 10 ~ 11, PEG as the surfactant, drying at 70°C±5°C, heat treatment temperature at 800°C for 3h, particle size distribution of MgO-Al2O3-ZrO2composite powders were: d10= 1.28 μm, d50= 4.65μm, d90= 11.13μm (MgO 10%); d10= 1.15μm, d50= 5.80μm, d90= 15.13μm (MgO 15%);d10= 1.21μm, d50= 6.59μm, d90= 16.87μm (MgO 20%). With the rising of heat treatment temperature, the crystallization degree of composite powders increased, at 800 °C a small amount of t - ZrO2precipitated, meanwhile MgO and Al2O3are still in the amorphous phase. The MgO-A12O3-ZrO2composite powders under this condition have high reactivity and uniform distribution.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 858
Author(s):  
Shenglin Liu ◽  
Yongsheng Zhu ◽  
Xinyue Lai ◽  
Xueping Zheng ◽  
Runnan Jia ◽  
...  

Fe-based amorphous/nanocrystalline coatings with smooth, compact interior structure and low porosity were fabricated via supersonic plasma spraying (SPS). The coatings showed outstanding corrosion resistance in a 3.5% NaCl solution at room temperature. In order to analyze the effect of annealing treatment on the microstructure, corrosion resistance and microhardness, the as-sprayed coating was annealed for 1 h under different temperatures such as 350, 450, 550 and 650 °C, respectively. The results showed that the number of oxides and cracks in the coatings presented an obvious increase with increasing annealing temperature, and the corrosion resistance of the coatings showed an obvious reduction. However, the microhardness of coatings showed an important increase. The microhardness of the coating could reach 1018 HV when the heat treatment temperature reached 650 °C. The X-ray diffraction (XRD) results showed that there appeared a number of crystalline phases in the coating when the heat treatment temperature was at 650 °C. The crystalline phases led to the increase of the microhardness.


2011 ◽  
Vol 464 ◽  
pp. 474-477
Author(s):  
Yan Hai Cheng ◽  
Zhen Cai Zhu ◽  
Zheng Tong Han

In the paper, different phosphorus content Ni-P coatings was prepared by electroless plating. The microstructural changes of electroless Ni-P coatings on both as-deposited condition and heat treatment were investigated by X-ray diffractometry (XRD). The relationship between microstructure of Ni-P coatings and phosphorus content and heat treatment temperature were discussed. This conclusion provided a good theoretical basis for Ni-P coating using for wear and corrosion resistances in the technology of MEMS.


1988 ◽  
Vol 100 ◽  
Author(s):  
Mark C. Ridgway ◽  
J. L. Whitton ◽  
P. J. Scanlon ◽  
A. A. Naem

ABSTRACTRapid thermal annealing (RTA) of shallow Sb-implanted Si has been studied with Rutherford Backscattering Spectrometry (RBS). Single crystal Si wafers were implanted with Sb at energies of 16, 32 and 48 keV and doses of 5×1014 and 1×1015/cm2. RTA and reference furnace anneals in a nitrogen atmosphere were done to activate the dopant and remove implantation damage. Glancing-angle RBS measurements were used to determine the Sb depth distributions. Dopant profiles obtained with RBS analysis were compared with Secondary Ion Mass Spectrometry results and TRIM code calculations. RBS measurements of the projected range and range straggle did not differ significantly from TRIM code calculations. Following annealing, significant Sb diffusion from the as-implanted peak was apparent. Sb accumulation at the substrate surface was pronounced, especially for furnace-annealed samples.


2012 ◽  
Vol 624 ◽  
pp. 134-137 ◽  
Author(s):  
Ping Zhai ◽  
Xiao Feng Duan ◽  
Da Qian Chen ◽  
Chong Hai Wang

In this paper, β-eucryptite glass ceramics were synthesized by using solid reaction method. Phase constitution, structure and properties of the material were studied by X-ray diffraction (XRD) and differential thermal analysis (DTA). Furthermore, the effects of heat treatment temperature and preservation time on the thermal expansion coefficient were also analyzed. The results showed that the crystallization temperature of β-eucryptite glass ceramics was in the range of 810-860 °C and the content was more than 90%. With the increase of heat treatment temperature, the material expansion coefficient decreased.


Author(s):  
Eva Afrilinda ◽  
Dagus Resmana Djuanda ◽  
Shinta Virdhian ◽  
Martin Doloksaribu ◽  
Moch Iqbal Zaelana Muttahar ◽  
...  

To understand the morphology of the coercivity enhancement by heat treatment, a commercial sintered NdFeB-type permanent magnet is annealed, and the coercivity is measured by Permagraph. It is shown that the coercivity is increased compared to the initial. Observation by X-Ray Diffraction (XRD) analysis and Scanning Electron Microscope-Energy Dispersive X-ray Spectroscopy (SEM-EDS) is then conducted. The XRD result shows the amount of NdFeB content in the NdFeB-type permanent magnet is increased after heat treatment. The more significant amount of NdFeB content causes higher coercivity. The maximum coercivity, 19 kOe, is achieved at 850 °C of heat treatment temperature, where the NdFeB content is at the highest amount. Microstructural characterizations using SEM-EDS show that at 850 °C of heat treatment temperature, the iron (Fe) content in the grain boundaries is the lowest. It causes higher coercivity. This is due to the magnetically decoupled between NdFeB grains. The decoupling magnet of the NdFeB grains is affected by the Fe content in the grain boundaries. High-temperature heat treatment at 900 and 1050 °C led to the decomposition of NdFeB content in the grains and increased the Fe content in the grain boundaries, which resulted in a substantial reduction of magnetic coercivity.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Abiodun E. Adeoye ◽  
Emmanuel Ajenifuja ◽  
Bidini A. Taleatu ◽  
A. Y. Fasasi

Zinc lead sulphide ternary thin films were prepared by chemical spray pyrolysis on soda lime glass substrates using zinc acetate, lead acetate, and thiourea sources precursor. The films were characterized using Rutherford backscattering (RBS) spectrometry, energy dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM), and X-ray diffractometry (XRD). RBS studies revealed variation in thickness and stoichiometry of the films with respect to compositional substitution between Zn and Pb, thereby giving effective composition ZnxPb1-xS, where x=0, 0.035, 0.069, 0.109, 0.176, and 0.217. Film thickness obtained by length conversion ranged from 81.02 nm to 90.03 nm. Microstructural analyses also indicated that the growth and particle distribution of the films were uniform across substrate’s surface. Diffraction studies showed that the films possess FCC crystalline structure. Crystallite size reduced from 14.28 to 9.8 nm with increase in Zn2+ in the ZnxPb1-xS samples.


1994 ◽  
Vol 346 ◽  
Author(s):  
A.W. Reid ◽  
B. Rand ◽  
R.J.P. Emsley

ABSTRACTIt is shown that ceramics derived from polycarbosilane polymers may develop an open nanoporous network after heat treatment to a temperatures between 1300 and 1550°C in argon. The resulting SiC-based ceramics were characterised by N2 gas adsorption analysis and X-ray diffraction. The apparent surface area, and pore volume increase with increasing heat treatment temperature, reaching values of 170 m2g-1 and 0.12 cm3-1 respectively. The pore network develops as the SiC crystals grow and as carbon is ejected from the structure. It is thought that the porosity may reside within the carbon phase, but this remains to be confirmed.


Sign in / Sign up

Export Citation Format

Share Document