Investigation of TiN/TiSi2 Bilayer Thin Films on Si (100) Substrate

1995 ◽  
Vol 402 ◽  
Author(s):  
Y. Shor ◽  
J. Pelleg

AbstractIn this work the conditions of forming a bi – layer structure of TiN/TiSi2 thin film on Si (100) substrate is investigated. Two methods of producing this structure were used: a) Deposition of Ti on Si (100), followed by reactive sputtering to obtain TiN on top of this layer and b) codeposition of Ti and Si on Si (100) and then deposition of TiN by reactive sputtering. The reactive sputtering was carried out in a mixture of N2/Ar with 20% N2. This amount is believed to be optimal for obtaining good quality and stoichiometric TiN films. Annealing is essential to form TiSi2 and it was performed either in the sputtering chamber immediately after the deposition or by rapid thermal annealing (RTA). The structure of the specimens was analyzed by X-ray diffraction using step scanning, Auger electron spectroscopy (AES) and transmission electron microscopy (TEM). TEM analysis was done on cross sectional specimens and also electron diffraction results were recorded. Resistivity measurements were performed by four – point probe method. The influence of TiN on the silicide formation was established. The results indicate that in the presence of TiN the phase TiSi2 was obtained, but in its absence Ti5 Si3 is formed under the same conditions of deposition and annealing. The stress distribution was investigated by Hall – Williamson curves and it was found that TiN stabilizes the silicide film and no peeling was observed. The effectiveness of TiN as diffusion barrier against Al and Si penetration was tested at 500°C/lh. It was found, that under these conditions, the TIN/TiSi2 structure is about the same, as before the heat treatment. No Al penetration is observed.

2000 ◽  
Vol 15 (11) ◽  
pp. 2284-2287 ◽  
Author(s):  
Byung-Teak Lee ◽  
Yang-Soo Shin ◽  
Jin Hyeok Kim

Interfacial reactions between an Al thin film and a single-crystal (001) 6H–SiC substrate were investigated using x-ray diffraction and cross-sectional transmission electron microscopy. Aluminum thin films were prepared by radio-frequency magnetron sputtering method on 6H–SiC substrates at room temperature and then annealed at various temperatures from 500 to 900 °C. A columnar-type polycrystalline Al thin film was formed on a 6H–SiC substrate in the as-deposited sample. No remarkable microstructural change, compared to the as-deposited sample, was observed in the sample annealed at 500 °C for 1 h. However, it was found that the Al layer reacted with the SiC substrate at 700 °C and formed an Al–Si–C ternary compound at the Al/SiC interface. Samples annealed at 900 °C showed a double-layer structure with an Al–Si mixed surface layer and an Al–Si–C compound layer below in contact with the substrate.


1993 ◽  
Vol 311 ◽  
Author(s):  
Lin Zhang ◽  
Douglas G. Ivey

ABSTRACTSilicide formation through deposition of Ni onto hot Si substrates has been investigated. Ni was deposited onto <100> oriented Si wafers, which were heated up to 300°C, by e-beam evaporation under a vacuum of <2x10-6 Torr. The deposition rates were varied from 0.1 nm/s to 6 nm/s. The samples were then examined by both cross sectional and plan view transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy and electron diffraction. The experimental results are discussed in terms of a new kinetic model.


1996 ◽  
Vol 441 ◽  
Author(s):  
N. Sukidi ◽  
N. Dietz ◽  
U. Rossow ◽  
K. J. Bachmann

AbstractIn this contribution we report on the real-time monitoring of low temperature growth of epitaxial GaxIn1-xP/GaP heterostructures on Si(100) by pulse chemical beam epitaxy, using tertiary butylphosphine (TBP), triethylgallium (TEG), and trimethylindium (TMI) as source materials. Both step-graded and continuously graded heterostructures have been investigated. The composition of the GaxIn1-xP epilayers has been analyzed by various techniques including X-ray diffraction, Rutherford backscattering, Auger, and Raman spectroscopy. Good correlation has been found between X-ray diffraction, RBS, and Vegard's law compositional analysis. We used Ppolarized Reflectance Spectroscopy (PRS) and Laser Light Scattering (LLS) to monitor the growth rate and surface morphology during growth. The information gained by these techniques has been utilized in the improvement of the surface preconditioning as well as to optimize the initial heteroepitaxial nucleation and overgrowth process. We studied the optical response to the compositional changes in the surface reaction layer (SRL) during the exposure of the surface to either sequential or synchronous pulses of TEG and TMI. The cross sectional TEM analysis indicates that the synchronous exposure results in an abrupt GaxIn1-xP/GaP interface while the sequential exposure does not which may suggest a compositionally graded interlayer formation. For heteroepitaxial GaxIn1-xP films on Si, a buffer layer of GaP is found to be necessary for optimum uniformity of the GaxIn1-xP layer. The selective growth of GaxIn1-xP on Si(001) is accessed.


Biomolecules ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 38 ◽  
Author(s):  
Banzeer Ahsan Abbasi ◽  
Javed Iqbal ◽  
Riaz Ahmad ◽  
Layiq Zia ◽  
Sobia Kanwal ◽  
...  

This study attempts to obtain and test the bioactivities of leaf extracts from a medicinal plant, Geranium wallichianum (GW), when conjugated with zinc oxide nanoparticles (ZnONPs). The integrity of leaf extract-conjugated ZnONPs (GW-ZnONPs) was confirmed using various techniques, including Ultraviolet–visible spectroscopy, X-Ray Diffraction, Fourier Transform Infrared Spectroscopy, energy-dispersive spectra (EDS), scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The size of ZnONPs was approximately 18 nm, which was determined by TEM analysis. Additionally, the energy-dispersive spectra (EDS) revealed that NPs have zinc in its pure form. Bioactivities of GW-ZnONPs including antimicrobial potentials, cytotoxicity, antioxidative capacities, inhibition potentials against α-amylase, and protein kinases, as well as biocompatibility were intensively tested and confirmed. Altogether, the results revealed that GW-ZnONPs are non-toxic, biocompatible, and have considerable potential in biological applications.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Wei-Lin Wang ◽  
Chia-Ti Wang ◽  
Wei-Chun Chen ◽  
Kuo-Tzu Peng ◽  
Ming-Hsin Yeh ◽  
...  

Ta/TaN bilayers have been deposited by a commercial self-ionized plasma (SIP) system. The microstructures of Ta/TaN bilayers have been systematically characterized by X-ray diffraction patterns and cross-sectional transmission electron microscopy. TaN films deposited by SIP system are amorphous. The crystalline behavior of Ta film can be controlled by the N concentration of underlying TaN film. On amorphous TaN film with low N concentration, overdeposited Ta film is the mixture ofα- andβ-phases with amorphous-like structure. Increasing the N concentration of amorphous TaN underlayer successfully leads upper Ta film to form pureα-phase. For the practical application, the electrical property and reliability of Cu interconnection structure have been investigated by utilizing various types of Ta/TaN diffusion barrier. The diffusion barrier fabricated by the combination of crystallizedα-Ta and TaN with high N concentration efficiently reduces the KRc and improves the EM resistance of Cu interconnection structure.


1992 ◽  
Vol 280 ◽  
Author(s):  
Z. Ma ◽  
L. H. Allen

ABSTRACTSolid phase epitaxial (SPE) growth of SixGei1-x alloys on Si (100) was achieved by thermal annealing a-Ge/Au bilayers deposited on single crystal Si substrate in the temperature range of 280°C to 310°C. Growth dynamics was investigated using X-ray diffraction, Rutherford backscattering spectrometry, and cross-sectional transmission electron microscopy. Upon annealing, Ge atoms migrate along the grain boundaries of polycrystalline Au and the epitaxial growth initiates at localized triple points between two Au grains and Si substrate, simultaneously incorporating a small amount of Si dissolved in Au. The Au is gradually displaced into the top Ge layer. Individual single crystal SixGei1-x islands then grow laterally as well as vertically. Finally, the islands coalesce to form a uniform layer of epitaxial SixGe1-x alloy on the Si substrate. The amount of Si incorporated in the final epitaxial film was found to be dependent upon the annealing temperature.


2007 ◽  
Vol 336-338 ◽  
pp. 1676-1678
Author(s):  
Cheng Yun Ning ◽  
Ying Jun Wang ◽  
Xiao Feng Chen ◽  
Jian Dong Ye ◽  
Gang Wu ◽  
...  

In the present study, bioactive functional gradient coatings were prepared using net-energy controlled plasma spraying technology. The microstructure and phases of the bioactive functional gradient coating were examined by means of transmission electron microscope, scanning electron microscopy and X-ray diffraction. The results revealed that: (1) as-sprayed coatings contained a large amount of amorphous phases and some nano-sized HA crystals formed during rapid solidification, (2) surface of the coating was very rough with different-sized micropores, and the gradient layer was much denser which firmly bonded to the substrate without gaps and obvious interface between the coating and the substrate


1985 ◽  
Vol 54 ◽  
Author(s):  
A. Lahav ◽  
M. Eizenberg ◽  
Y. Komem

ABSTRACTThe reaction between Ni60Ta40 amorphous alloy and (001) GaAs was studied by cross-sectional transmission electron microscopy, Auger spectroscopy, and x-ray diffraction. At 400°C formation of Ni GaAs at the interface with GaAs was observed. After heat treatment at 600°C in vacuum a layered structure of TaAs/NiGa/GaAs has been formed. The NiGa layer has epitaxial relations to the GaAs substrate. The vertical phase separation can be explained by opposite diffusion directions of nickel and arsenic atoms.


2008 ◽  
Vol 373-374 ◽  
pp. 104-107 ◽  
Author(s):  
J. Gao ◽  
Z.L. Wu ◽  
Z.P. Zhang ◽  
B.S. Cao ◽  
M.K. Lei

Fe/Cu nanometer-scale multilayers with nominal modulation wavelengths ranging from 5 to 40 nm are deposited by direct current magnetron sputtering on Si (100) substrates. Modulation structures of the multilayers are examined by small angle / wide angle x-ray diffraction (SA/WAXRD) and cross-sectional transmission electron microscopy (XTEM). Hardness of the multilayers is measured by using nanoindentation. All the multilayers have Fe (110) and Cu (111) textures. Interface coherency is observed in the multilayers with designed modulation wavelengths of 5 and 10 nm. The hardness increases firstly and then deceases with increasing the modulation wavelength, and reaches peak value of 7.29±0.29 GPa in the multilayers with nominal modulation wavelength of 10 nm. The evolution of the hardness of the mulitlayers is explained by interface width and modulus difference between sublayers.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 195
Author(s):  
Snežana S. S. Nenadović ◽  
Ljiljana M. Kljajević ◽  
Marija M. Ivanović ◽  
Miljana M. Mirković ◽  
Nadežda Radmilović ◽  
...  

The present work was focused on doping of 1% and 5% both of Nd2O3 and Sm2O3 in geopolymer gels. One of the main goals was to determine the influence of the behavior of Nd and Sm as dopants and structural nanoparticles changes of the final geopolymer formed. It is shown that the disorder formed by alkali activation of metakaolin can accommodate the rare earth cations Nd3+ and Sm3+ into their aluminosilicate framework structure. The main geopolymerization product identified in gels is Al-rich (Na)-AS-H gel comprising Al and Si in tetrahedral coordination. Na+ ions were balancing the negative charge resulting from Al3+ in tetrahedral coordination. The changes in the structures of the final product (geopolymer/Nd2O3; Sm2O3), has been characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analysis with energy dispersive spectrometry (EDS). Nucleation at the seed surfaces leads to the formation of phase-separated gels from rare earth phase early in the reaction process. It is confirmed that Nd and Sm have been shown to form unstable hydroxides Nd(OH)3 and Sm(OH)3 that are in equilibrium with the corresponding oxides.


Sign in / Sign up

Export Citation Format

Share Document