Phase Stability in Processing of High Temperature Intermetallic Alloys

1996 ◽  
Vol 460 ◽  
Author(s):  
J. H. Perepezko ◽  
C. A. Nuñes ◽  
S.-H. Yi ◽  
D. J. Thoma

ABSTRACTIn the development of high temperature intermetallics involving various aluminides, suicides and Laves phases, it has become evident that it is essential to consider the strong influence of materials processing throughout all stages. The underlying basis for alloy synthesis, processing and the assessment of thermal stability is established by the relevant phase equilibria, the characteristic diffusivities and the possible solidification reaction pathways. In almost all cases the microstructures of the most useful metallic alloys are multiphase assemblies in which the relative phase fractions, compositions and morphologies play key roles in optimizing the performance under high temperature conditions. The microstructure designs are usually tailored for strength, toughness, creep resistance and environmental stability and involve a balance of features derived from mixtures of a ductile phase and intermetallic phases. There is a clear experience that the level of materials processing can only be as sophisticated as the level of knowledge of the phase equilibria and the underlying kinetics. In many of the contemporary intermetallic alloys the phase stability must be considered in terms of multicomponent equilibria and non-stoichiometric intermetallic compositions. Recent developments in several important intermetallic alloy classes illustrate the guidance into alloy design and processing options provided by systematic studies of phase stability.

1986 ◽  
Vol 81 ◽  
Author(s):  
D. P. Pope

AbstractThis paper is intended to be a general introduction to this conference and is therefore not a review of the state of our current knowledge. Instead, it will address questions like the following: Why are intermetallic compounds interesting? What alloys are being studied, and which are being ignored? Since most research work is now being performed on L12 alloys, with by far the greatest emphasis on Ni3Al, the balanceof the paper will concentrate on strengthening mechanisms and mechanisms of ductility control in Ni3Al, pointing out the interesting questions and controversies which arose during this conference.The conclusions to be drawn from this paper are that ordered intermetallic alloys are very valuable materials for high temperature use, but engineers probably must become more sophisticated in the use of materials with limited ductilities at low temperatures before intermetallics will gain widespread usage. Furthermore, additional research needs to be performed on more complex intermetallic compounds than L12 since L12 compounds, as a group, do not have particularly high melting temperatures. However,since alloys with complex structures, e.g. Laves phases, are well known for their brittleness at low temperatures, it is all the more important that the properties of such alloys be studied and methods found to improve their ductilities.


2007 ◽  
Vol 561-565 ◽  
pp. 395-398 ◽  
Author(s):  
N. Matsumoto ◽  
Yasuyuki Kaneno ◽  
Takayuki Takasugi

Zr and/or Nb added Fe3Al based intermetallic alloys (i.e., Fe3Al-Zr, Fe3Al-Nb and Fe3Al-Zr-Nb) were arc-melted, homogenized, hot-rolled and then annealed to evaluate microstructure and tensile property at room temperature as well as at a high temperature (873K). After annealing, the rolled alloys exhibited a recrystallized microstructure containing coarse second phase particles, except for the Nb-added alloy with a minor content of Nb. Relatively high tensile elongation as well as high tensile strength was observed at room temperature in the Zr-added alloys with a minor amount of Zr. Also, these alloys showed relatively high tensile strength and elongation at high temperature (873K). The results suggest that tensile ductility as well as strength of Fe3Al-based alloys can be improved by introduction of the second phase dispersions.


2013 ◽  
Vol 1516 ◽  
pp. 109-114
Author(s):  
Yuting WANG ◽  
Seiji MIURA ◽  
Akira YOSHINARI

ABSTRACTRecently, Nb-Si based alloys have attracted considerable attention as potential candidate materials for ultra-high temperature applications, because of their low densities and high melting points. However, it is still very difficult to obtain materials with a good balance of high-temperature strength and room-temperature toughness. To address this issue, microstructure control is considered to be a promising method. In applying microstructure control to Nb-Si based alloys with a eutectic reaction (L → Nbss + Nb3Si) and a eutectoid reaction (Nb3Si → Nbss + Nb5Si3), the key is the control of Nb3Si phase stability. Nbss (Nb solid solution) is considered as a ductile phase. In previous reports, it was revealed that different elements had different effects on the stability of Nb3Si. In particular, Mo and W (>3 at %) destabilize the Nb3Si phase, while Ti and Ta stabilize it, and Zr acts as an accelerator for decomposition of Nb3Si. On the other hand, Cr is known to enhance the formation of the ductile Nbss phase. In the present study, we investigated the effects of adding combinations of stabilizing, destabilizing, and accelerating elements with Cr, such as Cr and W, Cr and Ta, Cr and Zr. According to SEM observation, different microstructures were obtained with different combination of additives, and the fracture toughness at room temperature of these samples were also evaluated to reveal the effects of the microstructure on the mechanical properties of Nb-Si based alloys.


2017 ◽  
Vol 83 ◽  
pp. 29-37 ◽  
Author(s):  
Mario J. Kriegel ◽  
Alexander Walnsch ◽  
Olga Fabrichnaya ◽  
Dmytro Pavlyuchkov ◽  
Volker Klemm ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3963
Author(s):  
Marius Holger Wetzel ◽  
Tina Trixy Rabending ◽  
Martin Friák ◽  
Monika Všianská ◽  
Mojmír Šob ◽  
...  

Although the general instability of the iron nitride γ′-Fe4N with respect to other phases at high pressure is well established, the actual type of phase transitions and equilibrium conditions of their occurrence are, as of yet, poorly investigated. In the present study, samples of γ′-Fe4N and mixtures of α Fe and γ′-Fe4N powders have been heat-treated at temperatures between 250 and 1000 °C and pressures between 2 and 8 GPa in a multi-anvil press, in order to investigate phase equilibria involving the γ′ phase. Samples heat-treated at high-pressure conditions, were quenched, subsequently decompressed, and then analysed ex situ. Microstructure analysis is used to derive implications on the phase transformations during the heat treatments. Further, it is confirmed that the Fe–N phases in the target composition range are quenchable. Thus, phase proportions and chemical composition of the phases, determined from ex situ X-ray diffraction data, allowed conclusions about the phase equilibria at high-pressure conditions. Further, evidence for the low-temperature eutectoid decomposition γ′→α+ε′ is presented for the first time. From the observed equilibria, a P–T projection of the univariant equilibria in the Fe-rich portion of the Fe–N system is derived, which features a quadruple point at 5 GPa and 375 °C, above which γ′-Fe4N is thermodynamically unstable. The experimental work is supplemented by ab initio calculations in order to discuss the relative phase stability and energy landscape in the Fe–N system, from the ground state to conditions accessible in the multi-anvil experiments. It is concluded that γ′-Fe4N, which is unstable with respect to other phases at 0 K (at any pressure), has to be entropically stabilised in order to occur as stable phase system. In view of the frequently reported metastable retention of the γ′ phase during room temperature compression experiments, energetic and kinetic aspects of the polymorphic transition γ′⇌ε′ are discussed.


Author(s):  
Xiu-Teng Wang ◽  
Guoliang Liu ◽  
Fei Fang ◽  
Ling Lin ◽  
Yang Zheng ◽  
...  

2000 ◽  
Vol 53 (6) ◽  
pp. 147-174 ◽  
Author(s):  
Victor Birman ◽  
Larry W. Byrd

A review of recent developments and state-of-the-art in research and understanding of damage and fatigue of ceramic matrix composites is presented. Both laminated as well as woven configurations are considered. The work on the effects of high temperature on fracture and fatigue of ceramic matrix composites is emphasized, because these materials are usually designed to operate in hostile environments. Based on a detailed discussion of the mechanisms of failure, the problems that have to be addressed for a successful implementation of ceramic matrix composites in design and practical operational structures are outlined. This review article includes 317 references.


Sign in / Sign up

Export Citation Format

Share Document