Microstructural Evolution during Superplastic Deformation in Large-grained Iron Aluminides

1998 ◽  
Vol 552 ◽  
Author(s):  
Dongliang Lin ◽  
Yi Liu

ABSTRACTSuperplastic behavior has been found in Fe3A1 and FeAl alloys with grain sizes of 100–600μm. The large-grained Fe3Al and FeAl alloys exhibit all deformation characteristics of conventional fine size superplastic alloys. However, superplastic behavior was found in large-grained iron aluminides without the usual pre-requisites for superplasticity of a fine grain size and grain boundary sliding. The metallographic examinations have shown that the average grain size of large-grained iron aluminides decreased during superplastic deformation. Transmission electron microscopy (TEM) observations have shown that there were a great number of subgrain boundaries which formed a network and among which the proportion of low and high angle boundaries increased with increased strain. The observed superplastic phenomenon is explained by continuous recovery and recrystallization. During superplastic deformation, an unstable subgrain network forms and these subboundaries absorb gliding dislocations and transform into low and high angle grain boundaries. A dislocation glide and climb process accommodated by subboundary sliding, migration and rotation, allows the superplastic flow to proceed

2009 ◽  
Vol 1242 ◽  
Author(s):  
Ramos A. Mitsuo ◽  
Martínez F. Elizabeth ◽  
Negrete S. Jesús ◽  
Torres-Villaseñor G.

ABSTRACTZinalco alloy (Zn-21mass%Al-2mass%Cu) specimens were deformed superplastically with a strain rate (ε) of 1×10-3 s-1 at homologous temperature (TH) of 0.68 (5 ). It was observed neck formation that indicate nonhomegeneus deformation. Grain size and grain boundaries misorientation changes, due superplastic deformation, were characterized by Orientation Imagining Microscopy (OIM) technique. It was studied three regions in deformed specimens and the results were compared with the results for a specimen without deformation. Average grain size of 1 mm was observed in non-deformed specimen and a fraction of 82% for grain boundary misorientation angles with a grain boundaries angles between 15° and 55° was found. For deformed specimen, the fraction of angles between 15° and 55° was decreced to average value of 75% and fractions of low angle (<5°) and high angle (>55°) misorientations were 10% and 15% respectively. The grain size and high fraction of grain boundary misorientation angles between 15° and 55° observed in the alloy without deformation, are favorable for grain rotation and grain boundary sliding (GBS) procces. The changes observed in the fraction of favorable grain boundary angles during superplastic deformation, shown that the superplastic capacity of Zinalco was reduced with the deformation.


2004 ◽  
Vol 449-452 ◽  
pp. 177-180 ◽  
Author(s):  
Cha Yong Lim ◽  
Jae Hyuck Jung ◽  
Seung Zeon Han

The equal channel angular pressing (ECAP) is one of the methods to refine the grain size of metallic materials. This study investigates the effect of ECAP process on the formation of the fine grain size in oxygen free Cu and Cu alloys. The average grain size has been refined from 150 µm before ECAP to 300 nm. Microstructure was analyzed by transmission electron micrography (TEM). The diffraction pattern of the selected area confirmed the formation of ultrafine-grained structure with high angle grain boundaries after 8 cycles of ECAP. Mechanical properties such as microhardness and tensile properties of the ultra-fine grained copper materials have been investigated.


2020 ◽  
Vol 321 ◽  
pp. 04028
Author(s):  
Paranjayee Mandal ◽  
Ares Gomez-Gallegos ◽  
Diego Gonzalez ◽  
Hosam Elrakayby ◽  
Paul Blackwell

Even though TIMETAL-54M (Ti-5Al-4V-0.6Mo-0.4Fe or Ti54M) has been commercially available for over 10 years, further study of its superplastic properties is still required in order to assess its applicability within the aerospace industry as a potential replacement for other commercial titanium alloys such as Ti-6Al-4V (Ti64). Ti54M is expected to obtain superplastic characteristics at a lower temperature than Ti64 due to its lower beta-transus temperature. The superplastic forming (SPF) capability of alloys that can be formed at lower temperatures has always attracted the interest of industry as it reduces the grain growth and alpha-case formation, leading to longer life for costly high temperature resistant forming tools. In this work, the SPF characteristics of both Ti54M and Ti64 have been examined by conducting tensile tests according to the ASTM E2448 standard within a range of temperatures and strain values at a fixed strain rate of 1 × 10-4/S. A high strain rate sensitivity and uniform deformation at high strains are key indicators in selecting the optimum superplastic temperature. This was observed at 815˚C and 925˚C for Ti54M and Ti64 respectively. The tensile samples were water quenched to freeze their respective microstructure evolution following superplastic deformation and SEM images were captured for grain size and volume fraction of alpha-phase analyses. A slightly higher alpha-grain growth rate was observed during superplastic deformation of Ti64. The initial fine-grain microstructure of Ti54M (~1.6 micron) resulted in a final microstructure with an average grain size of ~3.4 micron and optimum the alpha/beta ratio. Both the fine-grained microstructure and increased amount of beta-volume fraction promotes the superplastic behaviour of Ti54M by grain boundary sliding (GBS). Thus superplastic properties were observed for Ti54M at a lower temperature (~100˚C) than for Ti64.


2007 ◽  
Vol 551-552 ◽  
pp. 153-156 ◽  
Author(s):  
T. Kokubo ◽  
Goroh Itoh ◽  
Yoshinobu Motohashi

The deformation mechanism in the nanometer grain size range has been basically investigated from the results of microstructural observation after superplastic deformation in a Zn-Al eutectoid alloy in which a reverse grain size dependence of superplasticity was previously reported: flow stress increases and elongation decreases with decreasing grain size when grain size is markedly reduced to nanometer range. By controlling the aging condition after solution treatment and subsequent quenching, two specimens are prepared: the as-quenched specimen with ultrafine grains of 83nm in diameter and aged specimen with normally fine grains of 2.6μm. The elongation is confirmed to be smaller in the as-quenched specimen than in the aged specimen, although the flow stress is lower. As a result of TEM observation on the interior of the grains, dislocations are rare in the as-quenched specimen, while a significant density of dislocations are observed in the aged specimen. This result strongly supports the mechanism previously proposed by Mishra et al. that the accommodation process, i.e., the dislocation glide inside the grains, becomes more difficult with decreasing grain size in the nanometer grain size range, even though the grain boundary sliding as the major process becomes facilitated. Roughly assessed m-value was in accord with this mechanism.


Author(s):  
R. Sinclair ◽  
B.E. Jacobson

INTRODUCTIONThe prospect of performing chemical analysis of thin specimens at any desired level of resolution is particularly appealing to the materials scientist. Commercial TEM-based systems are now available which virtually provide this capability. The purpose of this contribution is to illustrate its application to problems which would have been intractable until recently, pointing out some current limitations.X-RAY ANALYSISIn an attempt to fabricate superconducting materials with high critical currents and temperature, thin Nb3Sn films have been prepared by electron beam vapor deposition [1]. Fine-grain size material is desirable which may be achieved by codeposition with small amounts of Al2O3 . Figure 1 shows the STEM microstructure, with large (∽ 200 Å dia) voids present at the grain boundaries. Higher quality TEM micrographs (e.g. fig. 2) reveal the presence of small voids within the grains which are absent in pure Nb3Sn prepared under identical conditions. The X-ray spectrum from large (∽ lμ dia) or small (∽100 Ǻ dia) areas within the grains indicates only small amounts of A1 (fig.3).


2007 ◽  
Vol 551-552 ◽  
pp. 387-392 ◽  
Author(s):  
Wen Juan Zhao ◽  
Hua Ding ◽  
D. Song ◽  
F.R. Cao ◽  
Hong Liang Hou

In this study, superplastic tensile tests were carried out for Ti-6Al-4V alloy using different initial grain sizes (2.6 μm, 6.5μm and 16.2 μm) at a temperature of 920°C with an initial strain rate of 1×10-3 s-1. To get an insight into the effect of grain size on the superplastic deformation mechanisms, the microstructures of deformed alloy were investigated by using an optical microscope and transmission electron microscope (TEM). The results indicate that there is dramatic difference in the superplastic deformation mode of fine and coarse grained Ti-6Al-4V alloy. Meanwhile, grain growth induced by superplastic deformation has also been clearly observed during deformation process, and the grain growth model including the static and strain induced part during superplastic deformation was utilized to analyze the data of Ti-6Al-4V alloy.


2021 ◽  
Vol 21 (9) ◽  
pp. 4897-4901
Author(s):  
Hyo-Sang Yoo ◽  
Yong-Ho Kim ◽  
Hyeon-Taek Son

In this study, changes in the microstructure, mechanical properties, and electrical conductivity of cast and extruded Al–Zn–Cu–Mg based alloys with the addition of Li (0, 0.5 and 1.0 wt.%) were investigated. The Al–Zn–Cu–Mg–xLi alloys were cast and homogenized at 570 °C for 4 hours. The billets were hot extruded into rod that were 12 mm in diameter with a reduction ratio of 38:1 at 550 °C. As the amount of Li added increased from 0 to 1.0 wt.%, the average grain size of the extruded Al alloy increased from 259.2 to 383.0 µm, and the high-angle grain boundaries (HGBs) fraction decreased from 64.0 to 52.1%. As the Li content increased from 0 to 1.0 wt.%, the elongation was not significantly different from 27.8 to 27.4% and the ultimate tensile strength (UTS) was improved from 146.7 to 160.6 MPa. As Li was added, spherical particles bonded to each other, forming an irregular particles. It is thought that these irregular particles contribute to the strength improvement.


2016 ◽  
Vol 838-839 ◽  
pp. 404-409
Author(s):  
Roman Mishnev ◽  
Iaroslava Shakhova ◽  
Andrey Belyakov ◽  
Rustam Kaibyshev

A Cu-0.87%Cr-0.06%Zr alloy was subjected to equal channel angular pressing (ECAP) at a temperature of 400 °C up to a total strain of ~ 12. This processing produced ultra-fine grained (UFG) structure with an average grain size of 0.6 μm and an average dislocation density of ~4×1014 m-2. Tensile tests were carried out in the temperature interval 450 – 650 °C at strain rates ranging from 2.8´10-4 to 0.55 s-1. The alloy exhibits superplastic behavior in the temperature interval 550 – 600 °C at strain rate over 5.5´10-3 s-1. The highest elongation-to-failure of ~300% was obtained at a temperature of 575 °C and a strain rate of 2.8´10-3 s-1 with the corresponding strain rate sensitivity of 0.32. It was shown the superplastic flow at the optimum conditions leads to limited grain growth in the gauge section. The grain size increases from 0.6 μm to 0.87 μm after testing, while dislocation density decreases insignificantly to ~1014 m-2.


2021 ◽  
Vol 1016 ◽  
pp. 1503-1509
Author(s):  
Kosuke Ueki ◽  
Soh Yanagihara ◽  
Kyosuke Ueda ◽  
Masaaki Nakai ◽  
Takayoshi Nakano ◽  
...  

The Co-20Cr-15W-10Ni (CCWN, mass%) alloy has excellent corrosion resistance and strength-ductility balance and is applied in almost all balloon-expandable stent platforms. To further reduce the invasiveness of stent placement, it is necessary to reduce the diameter of the stent. That is, both high strength and high ductility should be achieved while maintaining a low yield stress. In our previous studies, it was discovered that low-temperature heat-treatment (LTHT) at 873 K improves the elongation of the CCWN alloy. In this study, we focused on the grain refinement by swaging and static recrystallization to improve the strength of the alloy. The as-swaged alloy was recrystallized at 1373–1473 K for 100–300 s, followed by LTHT. A fine grain structure with an average grain size of 3–17 μm was obtained by static recrystallization. The η-phase (M12X-M6X type precipitates, M: metallic elements, X: C and/or N) formed during the recrystallization at 1373–1448 K. The alloys recrystallized at 1448 and 1473 K had a homogeneous structure with a small variation in the grain size. On the other hand, the alloys recrystallized at 1373 and 1423 K had an inhomogeneous structure in which fine and coarse grains were mixed. Both the strength and ductility of the CCWN alloy were improved by combining high-temperature short-time recrystallization and LTHT.


1982 ◽  
Vol 18 ◽  
Author(s):  
L. Krusin-Elbaum ◽  
M. Wittmer ◽  
C.-Y. Ting ◽  
J. J. Cuomo

We have studied reactively sputtered ZrN, the most thermally stable of the refractory metal nitrides, for its diffusion barrier properties in aluminum metallization schemes with Rutherford backscattering spectroscopy and transmission electron microscopy (TEM). We find this compound to be very effective against aluminum diffusion up to 500 °C, independently of substrate temperature during sputtering. The useful temperature range can be extended by 50 °C with proper preannealing prior to aluminum deposition. The TEM study of the ZrN grain size as a function of annealing temperature revealed that the grain size does not change significantly upon annealing and that the grains are relatively small even at the highest annealing temperatures (about 300 Å at 900 °C). In addition, for annealing temperatures of and below 500 °C large portions of ZrN films were found to be of either amorphous or extremely fine–grain material, thus inhibiting the diffusion along grain boundaries. The presence of Zr3Al4Si5 ternary compound in samples annealed at 600 °C, as determined by X-ray analysis, may suggest that the ZrN barrier fails by decomposition of the film by aluminum.


Sign in / Sign up

Export Citation Format

Share Document