Barrier Effect on Electroplated Cu Films

1999 ◽  
Vol 564 ◽  
Author(s):  
R. Faust ◽  
Q. Jiang

AbstractThe effect of various barrier materials on the microstructure of electroplated Copper films was investigated. Analysis of the Cu was performed at the as-deposited, room temperature stabilized, and annealed states. It shows that the barrier material can have a dramatic effect on the properties of electroplated Cu.

1999 ◽  
Vol 566 ◽  
Author(s):  
Konstantin Smekalin ◽  
Qing-Tang Jiang

CMP removal rate (RR) of electrodeposited Cu film was found to increase by 35% over time after plating. The RR increase was attributed to Cu film hardness reduction of 43% and grain growth from the initial 0.1urn at as-deposit to lum at the final stage at room temperature. The removal rate increase will translate to variations in manufacturing environment and are therefore unacceptable. It was found that annealing at ∼100C for 5 minutes in inert gas will stabilize Cu films and provide consistent CMP removal rate.


1996 ◽  
Vol 436 ◽  
Author(s):  
R.-M. Keller ◽  
W. Sigle ◽  
S. P. Baker ◽  
O. Kraft ◽  
E. Arzt

AbstractIn-situ transmission electron microscopy (TEM) was performed to study grain growth and dislocation motion during temperature cycles of Cu films with and without a cap layer. In addition, the substrate curvature method was employed to determine the corresponding stresstemperature curves from room temperature up to 600°C. The results of the in-situ TEM investigations provide insight into the microstructural evolution which occurs during the stress measurements. Grain growth occurred continuously throughout the first heating cycle in both cases. The evolution of dislocation structure observed in TEM supports an explanation of the stress evolution in both capped and uncapped films in terms of dislocation effects.


1999 ◽  
Vol 562 ◽  
Author(s):  
Michelle Chen ◽  
Suraj Rengarajan ◽  
Peter Hey ◽  
Yezdi Dordi ◽  
Hong Zhang ◽  
...  

ABSTRACTSelf-annealing properties of electroplated and sputtered copper films at room temperature were investigated in this study, in particular, the effect of copper film thickness, electrolyte systems used, as well as their level of organic additives for electroplating. Real-time grain growth was observed by transmission electron microscopy. Sheet resistance and X-ray diffraction measurements further confirmed the recrystallization of the electroplated copper film with time. The recrystallization of electroplated films was then compared with that of sputtered copper films.


1999 ◽  
Vol 564 ◽  
Author(s):  
Michelle Chen ◽  
Suraj Rengarajan ◽  
Peter Hey ◽  
Yezdi Dordi ◽  
Hong Zhang ◽  
...  

AbstractSelf-annealing properties of electroplated and sputtered copper films at room temperature were investigated in this study, in particular, the effect of copper film thickness, electrolyte systems used, as well as their level of organic additives for electroplating. Real-time grain growth was observed by transmission electron microscopy. Sheet resistance and X-ray diffraction measurements further confirmed the recrystallization of the electroplated copper film with time. The recrystallization of electroplated films was then compared with that of sputtered copper films.


2007 ◽  
Vol 353-358 ◽  
pp. 116-119 ◽  
Author(s):  
Bin Zhang ◽  
K.H. Sun ◽  
Jun Gong ◽  
Chao Sun ◽  
Zhong Guang Wang ◽  
...  

Fatigue tests of nanometer-thick Cu films as deposited and annealed in vacuum were conducted under constant load ranges at room temperature. Fatigue strengths of the Cu films, which is defined as the critical load range being able to cause crack initiation within 106 cycles, are determined. The experimental results show that fatigue strength increases with decreasing film thickness. Fatigue cracking behaviors were characterized by electron microscope. It is also found that fatigue cracking resistance is dependent on film thickness and increases with decreasing film thickness. Size effects on fatigue properties of the nanometer-thick Cu films are discussed.


2011 ◽  
Vol 109 (1) ◽  
pp. 014907 ◽  
Author(s):  
Andrew Ying ◽  
Christian Witt ◽  
Jean Jordan-Sweet ◽  
Robert Rosenberg ◽  
I. C. Noyan

2006 ◽  
Vol 21 (6) ◽  
pp. 1512-1518 ◽  
Author(s):  
Dongwen Gan ◽  
Paul S. Ho ◽  
Yaoyu Pang ◽  
Rui Huang ◽  
Jihperng Leu ◽  
...  

The present study investigated the effect of passivation on the kinetics of interfacial mass transport by measuring stress relaxation in electroplated Cu films with four different cap layers: SiN, SiC, SiCN, and a Co metal cap. Stress curves measured under thermal cycling showed different behaviors for the unpassivated and passivated Cu films, but were essentially indifferent for the films passivated with different cap layers. On the other hand, stress relaxation measured under an isothermal condition revealed clearly the effect of passivation, indicating that interface diffusion controls the kinetics of stress relaxation. The relaxation rates in the passivated Cu films were found to decrease in the order of SiC, SiCN, SiN, and metal caps. This correlates well with previous studies on the relationship between interfacial adhesion and electromigration. A kinetic model based on coupling of interface and grain-boundary diffusion was used to deduce the interface diffusivities and the corresponding activation energies.


1993 ◽  
Vol 313 ◽  
Author(s):  
D.P. Pappas ◽  
J.W. Glesener ◽  
V.G. Harris ◽  
J.J. Krebs ◽  
Y.U. Idzerda ◽  
...  

ABSTRACTThe growth of iron and copper films and multilayers on the (100) face of diamond has been achieved and studied by reflection high energy electron diffraction (RHEED), extended x-ray absorption fine structure (EXAFS), ferromagnetic resonance (FMR), and SQUID Magnetometry. RHEED and AES studies show that 2–3 atomic layers (AL) of Fe on C (100) forms a continuous film. The films as deposited at room temperature are disordered, and after a 350° C anneal displays a face-centered cubic structure. Subsequent layers of Cu on this epitaxial Fe film grow as an oriented, single crystal fee film. FMR and SQUID signals have been observed from the Fe films, showing that they are ferromagnetic.


1999 ◽  
Vol 86 (9) ◽  
pp. 4930-4935 ◽  
Author(s):  
Kazuyoshi Ueno ◽  
Tom Ritzdorf ◽  
Scott Grace

2003 ◽  
Vol 766 ◽  
Author(s):  
C. Witt ◽  
K. Pfeifer

AbstractThe conventionally used sequence for copper damascene metallization consists of barrier deposition, physical vapor deposition (PVD) Cu seed and electroplated copper. Due to the limited step coverage of PVD copper, the extendibility of this sequence to feature dimensions below 90 nm is at risk. To reduce the risk of pinch-off of very small features, the PVD layer thickness will be reduced well below 100 nm, the drawback being poor seed coverage at the bottom of the features. Void free fill by electroplating is hence at risk by both pinch-off and discontinuous seed coverage (3-5). In this paper, the use of a conformal metal deposition method, electroless copper, to enhance PVD seed layers as thin as 10 nm is presented. It is demonstrated that sparse, discontinuous copper films provide a catalytic surface for electroless copper deposition. With electroless copper, void-free copper fill of 12.5 aspect ratio (AR) trenches (70 nm width) and 8.3 AR vias is achieved. Furthermore, 6 nm thin electroless copper films were integrated in a dual damascene process and electrically characterized. A yield of approximately 85% was achieved on via chains (360000 links, 0.25 by 1.1 μm vias), with 10 nm PVD seed. This was comparable to the yield when using 100 nm PVD seed. Hydrogen, generated as a byproduct during the electroless copper ion reduction, was found in the copper deposits as well as in the barrier films underneath. In some cases, spontaneous blistering in the plated copper film was observed, and is believed to be due to hydrogen incorporation. The interaction of electroless copper films with various barrier materials (PVD Ta, PVD TaN, CVD TiN(Si) and combinations) is discussed. Electromigration test results presented in this paper indicate that the failure mechanism is not qualitatively different from reference samples with the conventional PVD seed.


Sign in / Sign up

Export Citation Format

Share Document