Surface Smoothing upon Deposition of Nanoparticles on Single Crystalline Substrates

1999 ◽  
Vol 585 ◽  
Author(s):  
C. G. Zimmermann ◽  
C. P. Liu ◽  
M. Yeadon ◽  
K. Nordlund ◽  
J. M. Gibson ◽  
...  

AbstractSurfaces with artificial roughness were generated by deposition of nanoparticles on single crystalline substrates. Nanoparticles with an average size ≈ 15 nm were produced by inert gas condensation and deposited in situ on the substrate mounted inside a modified ultra high vacuum (UHV) transmission electron microscope (TEM). We have investigated the smoothing behavior on annealing based on the difference in surface energies between cluster and substrate and their heat of mixing. The cluster substrate combination Co/Cu(100) was chosen as a model system in which the cluster has a significantly higher surface energy than the substrate. Upon deposition at 600 K, the clusters do not remain on the surface, but rather burrow into the substrate. This is confirmed by a detailed strain analysis of the particles. Nanoparticles in the system Ge/Si(100) in contrast have a lower surface energy than the substrate and are completely miscible. The particles assume the substrate orientation around 700 K. At 900 K coherent islands form which are arranged in clusters of 4 in the form of a square. The reason for this previously unobserved pattern is not yet understood.

Author(s):  
A. V. Crewe

The high resolution STEM is now a fact of life. I think that we have, in the last few years, demonstrated that this instrument is capable of the same resolving power as a CEM but is sufficiently different in its imaging characteristics to offer some real advantages.It seems possible to prove in a quite general way that only a field emission source can give adequate intensity for the highest resolution^ and at the moment this means operating at ultra high vacuum levels. Our experience, however, is that neither the source nor the vacuum are difficult to manage and indeed are simpler than many other systems and substantially trouble-free.


Author(s):  
Michel Troyonal ◽  
Huei Pei Kuoal ◽  
Benjamin M. Siegelal

A field emission system for our experimental ultra high vacuum electron microscope has been designed, constructed and tested. The electron optical system is based on the prototype whose performance has already been reported. A cross-sectional schematic illustrating the field emission source, preaccelerator lens and accelerator is given in Fig. 1. This field emission system is designed to be used with an electron microscope operated at 100-150kV in the conventional transmission mode. The electron optical system used to control the imaging of the field emission beam on the specimen consists of a weak condenser lens and the pre-field of a strong objective lens. The pre-accelerator lens is an einzel lens and is operated together with the accelerator in the constant angular magnification mode (CAM).


Author(s):  
Xianghong Tong ◽  
Oliver Pohland ◽  
J. Murray Gibson

The nucleation and initial stage of Pd2Si crystals on Si(111) surface is studied in situ using an Ultra-High Vacuum (UHV) Transmission Electron Microscope (TEM). A modified JEOL 200CX TEM is used for the study. The Si(111) sample is prepared by chemical thinning and is cleaned inside the UHV chamber with base pressure of 1x10−9 τ. A Pd film of 20 Å thick is deposited on to the Si(111) sample in situ using a built-in mini evaporator. This room temperature deposited Pd film is thermally annealed subsequently to form Pd2Si crystals. Surface sensitive dark field imaging is used for the study to reveal the effect of surface and interface steps.The initial growth of the Pd2Si has three stages: nucleation, growth of the nuclei and coalescence of the nuclei. Our experiments shows that the nucleation of the Pd2Si crystal occurs randomly and almost instantaneously on the terraces upon thermal annealing or electron irradiation.


Author(s):  
M. Gajdardziska-Josifovska ◽  
B. G. Frost ◽  
E. Völkl ◽  
L. F. Allard

Polar surfaces are those crystallographic faces of ionically bonded solids which, when bulk terminated, have excess surface charge and a non-zero dipole moment perpendicular to the surface. In the case of crystals with a rock salt structure, {111} faces are the exemplary polar surfaces. It is commonly believed that such polar surfaces facet into neutral crystallographic planes to minimize their surface energy. This assumption is based on the seminal work of Henrich which has shown faceting of the MgO(111) surface into {100} planes giving rise to three sided pyramids that have been observed by scanning electron microscopy. These surfaces had been prepared by mechanical polishing and phosphoric acid etching, followed by Ar+ sputtering and 1400 K annealing in ultra-high vacuum (UHV). More recent reflection electron microscopy studies of MgO(111) surfaces, annealed in the presence of oxygen at higher temperatures, have revealed relatively flat surfaces stabilized by an oxygen rich reconstruction. In this work we employ a combination of optical microscopy, transmission electron microscopy, and electron holography to further study the issue of surface faceting.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove

The silicides CoSi2 and NiSi2 are both metallic with the fee flourite structure and lattice constants which are close to silicon (1.2% and 0.6% smaller at room temperature respectively) Consequently epitaxial cobalt and nickel disilicide can be grown on silicon. If these layers are formed by ultra high vacuum (UHV) deposition (also known as molecular beam epitaxy or MBE) their thickness can be controlled to within a few monolayers. Such ultrathin metal/silicon systems have many potential applications: for example electronic devices based on ballistic transport. They also provide a model system to study the properties of heterointerfaces. In this work we will discuss results obtained using in situ and ex situ transmission electron microscopy (TEM).In situ TEM is suited to the study of MBE growth for several reasons. It offers high spatial resolution and the ability to penetrate many monolayers of material. This is in contrast to the techniques which are usually employed for in situ measurements in MBE, for example low energy electron diffraction (LEED) and reflection high energy electron diffraction (RHEED), which are both sensitive to only a few monolayers at the surface.


Author(s):  
Michael T. Marshall ◽  
Xianghong Tong ◽  
J. Murray Gibson

We have modified a JEOL 2000EX Transmission Electron Microscope (TEM) to allow in-situ ultra-high vacuum (UHV) surface science experiments as well as transmission electron diffraction and imaging. Our goal is to support research in the areas of in-situ film growth, oxidation, and etching on semiconducter surfaces and, hence, gain fundamental insight of the structural components involved with these processes. The large volume chamber needed for such experiments limits the resolution to about 30 Å, primarily due to electron optics. Figure 1 shows the standard JEOL 2000EX TEM. The UHV chamber in figure 2 replaces the specimen area of the TEM, as shown in figure 3. The chamber is outfitted with Low Energy Electron Diffraction (LEED), Auger Electron Spectroscopy (AES), Residual Gas Analyzer (RGA), gas dosing, and evaporation sources. Reflection Electron Microscopy (REM) is also possible. This instrument is referred to as SHEBA (Surface High-energy Electron Beam Apparatus).The UHV chamber measures 800 mm in diameter and 400 mm in height. JEOL provided adapter flanges for the column.


1990 ◽  
Vol 181 ◽  
Author(s):  
J. M. Gibson ◽  
D. Loretto ◽  
D. Cherns

ABSTRACTWe have studied the formation of metal silicides in-situ in an ultra-high vacuum transmission electron microscope. Metals were deposited on in-situ cleaned, reconstructed silicon surfaces and annealed. For the metals Ni and Co, we find that the phase sequence in ultra-thin films is different from that seen in ≈1000 Å thick films, and attribute this to the high surface-to-volume ratio. In general reactions occur at room temperature, to form an epitaxial phase if possible. We report preliminary new results on the formation of Pd2Si.


2007 ◽  
Vol 1026 ◽  
Author(s):  
Li Sun ◽  
John E. Pearson ◽  
Judith C. Yang

AbstractThe nucleation and growth of Cu2O and NiO islands due to oxidation of Cu-24%Ni(001) films were monitored at various temperatures by in situ ultra-high vacuum (UHV) transmission electron microscopy (TEM). In remarkable contrast to our previous observations of Cu and Cu-Au oxidation, irregular-shaped polycrystalline oxide islands were observed to form with respect to the Cu-Ni alloy film, and an unusual second oxide nucleation stage was noted. Similar to Cu oxidation, the cross-sectional area growth rate of the oxide island is linear indicating oxygen surface diffusion is the primary mechanism of oxide growth.


2017 ◽  
Vol 608 ◽  
pp. A50 ◽  
Author(s):  
M. Bertin ◽  
M. Doronin ◽  
X. Michaut ◽  
L. Philippe ◽  
A. Markovits ◽  
...  

Context. Almost 20% of the ~200 different species detected in the interstellar and circumstellar media present a carbon atom linked to nitrogen by a triple bond. Of these 37 molecules, 30 are nitrile R-CN compounds, the remaining 7 belonging to the isonitrile R-NC family. How these species behave in their interactions with the grain surfaces is still an open question. Aims. In a previous work, we have investigated whether the difference between nitrile and isonitrile functional groups may induce differences in the adsorption energies of the related isomers at the surfaces of interstellar grains of various nature and morphologies. This study is a follow up of this work, where we focus on the adsorption on carbonaceous aromatic surfaces. Methods. The question is addressed by means of a concerted experimental and theoretical approach of the adsorption energies of CH3CN and CH3NC on the surface of graphite (with and without surface defects). The experimental determination of the molecule and surface interaction energies is carried out using temperature-programmed desorption in an ultra-high vacuum between 70 and 160 K. Theoretically, the question is addressed using first-principle periodic density functional theory to represent the organised solid support. Results. The adsorption energy of each compound is found to be very sensitive to the structural defects of the aromatic carbonaceous surface: these defects, expected to be present in a large numbers and great diversity on a realistic surface, significantly increase the average adsorption energies to more than 50% as compared to adsorption on perfect graphene planes. The most stable isomer (CH3CN) interacts more efficiently with the carbonaceous solid support than the higher energy isomer (CH3NC), however.


2005 ◽  
Vol 483-485 ◽  
pp. 205-208 ◽  
Author(s):  
Motoi Nakao ◽  
Hirofumi Iikawa ◽  
Katsutoshi Izumi ◽  
Takashi Yokoyama ◽  
Sumio Kobayashi

200 mm wafer with 3C-SiC/SiO2/Si structure has been fabricated using 200 mm siliconon- insulator (SOI) wafer. A top Si layer of 200 mm SOI wafer was thinned down to approximately 5 nm by sacrificial oxidization, and the ultrathin top Si layer was metamorphosed into a 3C-SiC seed layer using a carbonization process. Afterward, an epitaxial SiC layer was grown on the SiC seed layer with ultra-high vacuum chemical vapor deposition. A cross-section transmission electron microscope indicated that a 3C-SiC seed layer was formed directly on the buried oxide layer of 200 mm wafer. The epitaxial SiC layer with an average thickness of approximately 100 nm on the seed was recognized over the entire region of the wafer, although thickness uniformity of the epitaxial SiC layer was not as good as that of SiC seed layer. A transmission electron diffraction image of the epitaxial SiC layer showed a monocrystalline 3C-SiC(100) layer with good crystallinity. These results indicate that our method enables to realize 200 mm SiC wafers.


Sign in / Sign up

Export Citation Format

Share Document