Stress and Stress Relaxation Study of Sputtered PZT Thin Films for Microsystems Applications

1999 ◽  
Vol 594 ◽  
Author(s):  
E. Defaÿ ◽  
C. Malhaire ◽  
C. Dubois ◽  
D. Barbier

AbstractResidual stresses in thin films play an important role in the mechanical behaviour of MEMS. In this paper we present a study of the stress and its relaxation for the PZT films, and associated electrodes, deposited on oxidized silicon substrates. The stresses were calculated from the bending plate method and the Stoney's equation. The radius of curvature were measured by optical profilometry before and after films deposition. The substrates (180 μm Si + 0.66 μm thermal SiO2) were coated with sputtered Ti (20 nm) and Pt (200 nm) used as bottom electrode. The global stress in the Ti/Pt layer was found compressive (−1.29 GPa) after deposition and tensile (465 MPa) after annealing (400°C, 30s, Ar). A 0.55 μm thick PZT layer was RF-magnetron sputtered and crystallized by a RTA (700°, 30s, Air). The as-deposited PZT films exhibited a little tensile stress of 43 MPa. After annealing, a tensile stress value of 363 MPa was found. Finally, we observed that the stress of the whole multilayer showed a decrease as a function of time. In order to explain this phenomenon, depth profile of each component of the PZT layer were obtained by Secondary Ion Mass Spectrometry (SIMS). This time-dependent stress relaxation was then correlated to a lead and oxygen migration across the PZT layer.

2003 ◽  
Vol 18 (9) ◽  
pp. 2122-2134 ◽  
Author(s):  
Jonathan B. Shu ◽  
Susan B. Clyburn ◽  
Thomas E. Mates ◽  
Shefford P. Baker

The thermomechanical behavior of Cu thin films, 600–1125 nm thick and encapsulated between SiNx barrier and SiNx or AlNx passivation layers on silicon substrates, was studied during thermal cycling between room temperature and 400 or 500 °C using the substrate curvature method. Films were prepared with varying oxygen contents, and the distribution of oxygen through the thickness of selected films was studied before and after thermal cycling using secondary ion mass spectrometry. Large variations in the thermomechanical behavior with oxygen content were found and correlated with segregation of oxygen to the film/barrier and film/passivation interfaces. These variations are thought to be due to recovery of stored misfit dislocation energy, which is, in turn, controlled by oxygen in the film. Effects of oxygen on film deformation through variations in interfacial adhesion and diffusion-induced dislocation glide are considered.


1989 ◽  
Vol 158 ◽  
Author(s):  
Sun Jin Yun ◽  
Young-Jin Jeon ◽  
Jeong Y. Lee

ABSTRACTThe silicon trench etching in BCl3/Cl2 reactive ion etching plasma leads to the intrinsic bonding damage, the permeations of etching species and impurities into silicon substrates, and the deposition of residue film on trench sidewall. The contaminations and the damages in trench were investigated by using high resolution transmission electron microscopy (HRTEM), secondary ion mass spectrometry (SIMS), and x-ray photoelectron spectroscopy (XPS). The microstructure of the rounded bottom surface showed that the surface region was distorted by 2 - 6 atomic layers and the trench etch was mainly limited by the physical sputtering-like mechanism. The damage in the silicon lattice consisted of prominent planar defects roughly confined to {110} and {111} planes. The thickness of sidewall residue film was 10 - 90 nm, which was thinner at deeper region of the trench, whereas that of residue film at the trench bottom was 1.5 - 3.5 nm. The SIMS results of no-patterned specimen presented that the permeation depths of boron and chlorine into the Si-substrate were about 40 and 20 nm, respectively. The presence of BxCly and Cl-related Si chemical states was identified from XPS analysis of the residue film.


2003 ◽  
Vol 784 ◽  
Author(s):  
V. Rajasekarakumar ◽  
P. Victor ◽  
R. Ranjith ◽  
S. Saha ◽  
S. Rajagopalan ◽  
...  

ABSTRACTThin films of BaZrO3 (BZ) were grown using a pulsed laser deposition technique on platinum coated silicon substrates. Films showed a polycrystalline perovskite structure upon different annealing procedures of in-situ and ex-situ crystallization. The composition analyses were done using Energy dispersive X-ray analysis (EDAX) and Secondary ion mass spectrometry (SIMS). The SIMS analysis revealed that the ZrO2 formation at the right interface of substrate and the film leads the degradation of the device on the electrical properties in the case of ex-situ crystallized films. But the in-situ films exhibited no interfacial formation. The dielectric properties have been studied for the different temperatures in the frequency regime of 40 Hz to 100kHz. The response of the film to external ac stimuli was studied at different temperatures, and it showed that ac conductivity values in the limiting case are correspond to oxygen vacancy motion. The electrical modulus is fitted to a stretched exponential function and the results clearly indicate the presence of the non-Debye type of dielectric relaxation in these materials.


1999 ◽  
Vol 562 ◽  
Author(s):  
P. Gergaud ◽  
H. Yang ◽  
C. PéLissonnier-Grosjean ◽  
A. J. Bottger ◽  
P. Sandström ◽  
...  

ABSTRACTNanometer thick films are often in a state of high residual stress. This may strongly influence physical properties such as magnetic anisotropy. The aim of our study is to investigate whether the overall stress in multilayers may be tailored via the control of the sputtering parameters or of the individual thicknesses. The coatings investigated were deposited at room temperature by magnetron sputtering on oxidised silicon substrates. Ag/Ni multilayers of superperiod between 4 to 20 nm and thin films (Ag or Ni) 200 nm thick have been deposited under a krypton partial pressure varying between 1 and 8 mTorr. Internal stress measurements were performed by curvature method and x-ray diffraction sin2ψ method. The latter one allows the determination of the stress and of the stress-free lattice parameter in the Ag or the Ni layers whereas the first one gives rise to a measure of the average stress in the coating. The main results are the followings: (i) The stress in Ni thin films changes from compressive to tensile at a pressure between 2 and 5 mTorr whereas Ag thin films are sligthly tensile whatever the pressure; (ii) The stress in multilayers is tensile in Ag and Ni and decreases with sublayer thickness; (iii) The stress free lattice parameter of Ag in thin films or multilayers is independent of the Kr pressure and of the layer thickness and is equal to the bulk value; (iv) On the opposite, the stress-free lattice parameter of nickel decreases with the layer thickness in multilayers and is equal to the bulk value in thin films. These results are discussed in terms of the respective influence of interfacial intermixing and atomic peening mechanism.


2005 ◽  
Vol 20 (1) ◽  
pp. 68-74 ◽  
Author(s):  
M. Gaidi ◽  
L. Stafford ◽  
A. Amassian ◽  
M. Chaker ◽  
J. Margot ◽  
...  

The influence of the microstructure of strontium-titanate-oxide (SrTiO3 or STO) thin films on their optical properties was investigated through an extensive characterization. The STO films have been deposited on silicon substrates by reactive pulsed laser deposition. The effect of the oxygen deposition pressure on the crystalline quality of the films was systematically studied by x-ray diffraction and scanning electron microscopy. Rutherford backscattering spectrometry, x-ray photoelectron spectroscopy, and secondary ion mass spectrometry were used to determine the atomic density and depth concentration profiles of the various species forming the film. The refractive index and extinction coefficient were obtained using variable angle spectroscopic ellipsometry. Based on this full characterization, it is demonstrated that the optical characteristics of the films are directly correlated to their microstructural properties. In particular, the refractive index increases with film density, while losses decrease. In addition, the interface between STO and Si is characterized by an interdiffusion layer. As the deposition pressure is enhanced, the width of this layer significantly increases, inducing localized inhomogeneity of the refractive index.


2012 ◽  
Vol 463-464 ◽  
pp. 472-476
Author(s):  
Tao Zhang ◽  
Hong Wei Ma ◽  
Jie Liu ◽  
Peng Li Zhang ◽  
Ping Liu

The ternary compound thin films doped with Mn and Nb, Pb(Mn1/3,Nb2/3)O3-PbZrO3- PbTiO3(PMnN-PZ-PT), with the same ratio of PZ/PT=52:48(PZT(52/48)) are fabricated on the heterostructure substrates of SrRuO3(SRO)/Pt(111)/Ti/SiO2/Si(100) by the radio frequency (RF) magnetron sputtering system, in which the quench method is used for the post heat treatments. The ternary compound films exhibit polycrystal phase combined with (001), (101) and (111) orientations with the 6% mole percent mixing ratio of PMnN, in which the (111) directions are the main orientations for non-mixed PZT(52/48) films and 6% mole percent PMnN mixing PZT(52/48) films(6%PMnN-94%PZT(52/48)), and so both of them are epitaxially grown on Silicon substrates with the (111) orientation. The ferroelectricities of the films are studied by the Sawyer Tower circuit, and the results show that the mixing of PMnN seriously improves the ferroelectricities of PZT(52/48), in which the 6% mixed PZT films own the rest polarization intensity , the saturation polarization intensity and the coercive electric-field intensity =139 kV/cm which are distinctly larger than the non-mixed PZT(52/48) films


1989 ◽  
Vol 152 ◽  
Author(s):  
S. L. Swartz ◽  
P. J. Melling ◽  
C. S. Grant

ABSTRACTThe sol-gel processing of ferroelectric thin films is being investigated at Battelle. The ferroelectric materials included in this study are PbTiO3, Pb(Zr, Ti)O3 (PZT), and KNbO3. The sol-gel processing and crystallization of these films on fused silica, silicon, alumina, and single crystal SrTiO3 substrates is described.Sol-gel derived PbTiO3 thin films crystallized into the expected tetragonal perovskite structure when heated to 500 C and above. However, the crystallization of sol-gel PZT (20/80) thin films was found to be substratedependent. The heat-treated PZT films were amorphous when deposited on silica and silicon substrates. Crystalline perovskite PZT films were produced on alumina substrates, and epitaxial PZT films were produced on single-crystal SrTiO3. Heat treatment of sol-gel KNbO3 films on silicon and alumina substrates resulted in the crystallization of a variety of non-perovskite phases, but epitaxial growth of KNbO3 was observed on single crystal SrTiO3.


1992 ◽  
Vol 7 (9) ◽  
pp. 2521-2529 ◽  
Author(s):  
D. Roy ◽  
S.B. Krupanidhi

Lead zirconate titanate (PZT) thin films were prepared by excimer laser ablation on platinum coated silicon substrates. The composition of the films showed dependence on the fluence at low energy densities (<2 J/cm2), and less dependence on the ablation fluence was observed beyond a fluence of 2 J/cm2. A correlation among the fluence, ablation pressure, and substrate temperature has been established. Crystalline perovskite PZT films showed a dielectric constant of 800–1000, a remnant polarization of 32 μC/cm2, and a coercive field of 130 kV/cm. Films showed fatigue behavior that may be used in a device, and a close comparison of fatigue behavior between the films deposited at different energy densities indicated a better fatigue behavior for a fluence of 4 J/cm2.


Author(s):  
TRINH BUI

PbZr0.4Ti0.6O3 (PZT) thin films have been conventionally fabricated on traditional silicon substrates with a platinum bottom electrode; however, as a consequence of unit cell mismatch, the films are difficult to form as an epitaxial-like growth. Hence, PZT films deposited on single-crystal niobium doped SrTiO3(111) substrates (Nb:STO) are promising to solve this issue thanks to the similar perovskite structure between PZT and STO. Essentially, Nb:STO material is a conductor, playing a part in both bottom electrode and epitaxial substrate. In this work, 200-nm-thick PZT films were successfully fabricated on Nb:STO substrates by a solution process. One obtained that PZT(111) peak started to appear on the Nb:STO substrate at a low annealing temperature of 450oC. Also, scanning electron microscopy observation shows smooth and homogeneous surface of PZT films on Nb:STO substrate with no grain boundary, which evidences for epitaxial-like growth of PZT thin films. Remnant polarization of 6 µC/cm2 and leakage current of 8×10-8 A were obtained at applied voltage of 5 V.


Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 1035 ◽  
Author(s):  
Alireza M. Kia ◽  
Nora Haufe ◽  
Sajjad Esmaeili ◽  
Clemens Mart ◽  
Mikko Utriainen ◽  
...  

For the analysis of thin films, with high aspect ratio (HAR) structures, time-of-flight secondary ion mass spectrometry (ToF-SIMS) overcomes several challenges in comparison to other frequently used techniques such as electron microscopy. The research presented herein focuses on two different kinds of HAR structures that represent different semiconductor technologies. In the first study, ToF-SIMS is used to illustrate cobalt seed layer corrosion by the copper electrolyte within the large through-silicon-vias (TSVs) before and after copper electroplating. However, due to the sample’s surface topography, ToF-SIMS analysis proved to be difficult due to the geometrical shadowing effects. Henceforth, in the second study, we introduce a new test platform to eliminate the difficulties with the HAR structures, and again, use ToF-SIMS for elemental analysis. We use data image slicing of 3D ToF-SIMS analysis combined with lateral HAR test chips (PillarHall™) to study the uniformity of silicon dopant concentration in atomic layer deposited (ALD) HfO2 thin films.


Sign in / Sign up

Export Citation Format

Share Document