Surface Evolution of NiTi and NiTiHf Thin Films

2000 ◽  
Vol 648 ◽  
Author(s):  
Chen Zhang ◽  
Ralph H. Zee ◽  
Paul E. Thoma

AbstractThe microstructure evolution of Ti-rich NiTi thin films and (TiHf)-rich NiTiHf thin films containing 9at% Hf was investigated. These films were deposited from single NiTi and NiTiHf targets using a DC magnetron sputtering system. Free-standing films were obtained by using single crystal silicon substrates. The thickness of these films was controlled between 10-12 μm. In this investigation, the effects of deposition temperature on the surface and cross-sectional microstructures of these films were studied. Substrate temperature during deposition was varied between 300°C to 700°C at 100°C intervals. The influence of post deposition heat treatment (HT) temperature on the microstructure of these films was also studied. The post deposition HT temperature was varied between 300°C and 800°C at 100°C intervals. Both surface and cross- sectional microstructures were examined using a scanning electron microscope (SEM). The crystallinity and the phases present were determined using x-ray diffractometry. All the as- deposited films were found to be crystalline, even when the substrate temperature was as low as 300°C. Results from the microstructure analysis show that all the films have a relatively fine grain size ranging from 0.2 μm to 2.5 μm, and the grain size increases with increasing substrate deposition temperature. The effect of post deposition HT on grain size was found to be minimal.

1991 ◽  
Vol 6 (6) ◽  
pp. 1278-1286 ◽  
Author(s):  
R. Ramesham ◽  
T. Roppel ◽  
C. Ellis ◽  
D.A. Jaworske ◽  
W. Baugh

Polycrystalline diamond thin films have been deposited on single crystal silicon substrates at low temperatures (⋚ 600 °C) using a mixture of hydrogen and methane gases by high pressure microwave plasma-assisted chemical vapor deposition. Low temperature deposition has been achieved by cooling the substrate holder with nitrogen gas. For deposition at reduced substrate temperature, it has been found that nucleation of diamond will not occur unless the methane/hydrogen ratio is increased significantly from its value at higher substrate temperature. Selective deposition of polycrystalline diamond thin films has been achieved at 600 °C. Decrease in the diamond particle size and growth rate and an increase in surface smoothness have been observed with decreasing substrate temperature during the growth of thin films. As-deposited films are identified by Raman spectroscopy, and the morphology is analyzed by scanning electron microscopy.


1999 ◽  
Vol 604 ◽  
Author(s):  
Chen Zhang ◽  
Paul E. Thoma ◽  
Ralph Zee

AbstractPolycrystalline NiTiHf films with around 9at% Hf have been successfully deposited from a single NiTiHf target using a DC magnetron sputtering system. Free standing films were obtained by depositing the films on single crystal silicon substrates. Thickness of the films was controlled between 10-12µm. In this investigation, the effects of deposition temperature on the crystallinity and transformation temperatures of the films were studied. Substrate temperature during deposition was varied between 300°C and 700°C at 100°C intervals. The influence of heat treatment temperature on the properties of the films was also investigated. The heat treatment temperature was between 300°C and 800°C at 100° C intervals. Transformation temperatures of these films were determined by differential scanning calorimetry (DSC). The crystallinity was determined using x-ray diffractometry. It was found that all the as-deposited films were crystalline even when the substrate temperature was as low as 300°C. Both martensite and austenite transformation temperatures increase with increasing substrate temperature and increasing heat treatment temperature.


1982 ◽  
Vol 18 ◽  
Author(s):  
Jiann-Ruey Chen ◽  
Ching-Hung Ho

Molybdenum thin films were deposited with an electron beam gun onto (100)- oriented silicon substrates. The samples were then annealed in vacuum, and the internal stresses in the molybdenum thin films were studied as functions both of the annealing temperature and of the substrate temperature during deposition. Silicide formation and the film thickness after annealing were monitored by the Rutherford backscattering spectrometry technique, and the stress was determined from the substrate curvature which was measured from Newton's ring interference fringes. It was found that, when the substrate temperature was kept at 400°C during deposition, MoSi2 was formed after annealing at temperatures above 500 °C. This MoSi2 exhibited large tensile stresses of about 2 × 1010 dyn cm−2 for annealing above 700 °C, whereas at the lower annealing temperature of 500 °C the stresses were compressive. No detectable silicides were observed when the substrates were kept at temperatures below 150 °C. The Mo-Si film stresses were tensile for substrates kept at room temperature during deposition and compressive for substrates kept at 150 °C.


1997 ◽  
Vol 483 ◽  
Author(s):  
S. A. Ustin ◽  
C. Long ◽  
L. Lauhon ◽  
W. Ho

AbstractCubic SiC films have been grown on Si(001) and Si(111) substrates at temperatures between 600 °C and 900 °C with a single supersonic molecular beam source. Methylsilane (H3SiCH3) was used as the sole precursor with hydrogen and nitrogen as seeding gases. Optical reflectance was used to monitor in situ growth rate and macroscopic roughness. The growth rate of SiC was found to depend strongly on substrate orientation, methylsilane kinetic energy, and growth temperature. Growth rates were 1.5 to 2 times greater on Si(111) than on Si(001). The maximum growth rates achieved were 0.63 μm/hr on Si(111) and 0.375μm/hr on Si(001). Transmission electron diffraction (TED) and x-ray diffraction (XRD) were used for structural characterization. In-plane azimuthal (ø-) scans show that films on Si(001) have the correct 4-fold symmetry and that films on Si(111) have a 6-fold symmetry. The 6-fold symmetry indicates that stacking has occurred in two different sequences and double positioning boundaries have been formed. The minimum rocking curve width for SiC on Si(001) and Si(111) is 1.2°. Fourier Transform Infrared (FTIR) absorption was performed to discern the chemical bonding. Cross Sectional Transmission Electron Microscopy (XTEM) was used to image the SiC/Si interface.


1988 ◽  
Vol 52 (10) ◽  
pp. 834-835 ◽  
Author(s):  
A. Potts ◽  
D. G. Hasko ◽  
J. R. A. Cleaver ◽  
H. Ahmed

2000 ◽  
Vol 654 ◽  
Author(s):  
P. C Joshi ◽  
M. W. Cole ◽  
C. W. Hubbard ◽  
E. Ngo

AbstractIn this paper, we report on the fabrication and characterization of pure and Al doped Ta2O5 thin films fabricated by metalorganic solution deposition (MOSD) technique. The pure and Aldoped Ta2O5 thin films were fabricated by spin-coating technique using room temperature processed carboxylate-alkoxide precursor solution. The structure of the films was analyzed by xray diffraction (XRD). The surface and cross-sectional morphology of the films were examined by field emission scanning electron microscope (FESEM) and atomic force microscope (AFM). The electrical measurements were conducted on films in MIM configuration using Pt as the top and bottom electrode. The effects of Al concentration and the post-deposition annealing temperature on the structural, dielectric, and insulating properties were analyzed. The effects of the applied bias and the measurement temperature on the dielectric and insulating properties were also analyzed to establish the stability and reliability of Al doped Ta2O5 thin films.


Sign in / Sign up

Export Citation Format

Share Document