Manufacturability Study for Etching High-Density BST/Pt Capacitors

2000 ◽  
Vol 655 ◽  
Author(s):  
Jay Hwang

AbstractProfile control, process repeatability and productivity concerns in etching Pt electrodes are reviewed specifically for application in fabricating high-density BST/Pt capacitors. The approach of using a high temperature cathode in a high-density reactive plasma chamber has produced a repeatable >85° Pt profile, stable etch rate and low particle results over a 500-wafer marathon test. A “corrosion-like” BST defect can be prevented by adding a post etch treatment to remove any corrosive residue from the wafer surface. A feasible manufacturing solution for etching BST/Pt capacitors for future high-density DRAM application is demonstrated.

Author(s):  
D-J Kim ◽  
I-G Kim ◽  
J-Y Noh ◽  
H-J Lee ◽  
S-H Park ◽  
...  

Abstract As DRAM technology extends into 12-inch diameter wafer processing, plasma-induced wafer charging is a serious problem in DRAM volume manufacture. There are currently no comprehensive reports on the potential impact of plasma damage on high density DRAM reliability. In this paper, the possible effects of floating potential at the source/drain junction of cell transistor during high-field charge injection are reported, and regarded as high-priority issues to further understand charging damage during the metal pad etching. The degradation of block edge dynamic retention time during high temperature stress, not consistent with typical reliability degradation model, is analyzed. Additionally, in order to meet the satisfactory reliability level in volume manufacture of high density DRAM technology, the paper provides the guidelines with respect to plasma damage. Unlike conventional model as gate antenna effect, the cell junction damage by the exposure of dummy BL pad to plasma, was revealed as root cause.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Hee Young Kwon ◽  
Kyung Mee Song ◽  
Juyoung Jeong ◽  
Ah-Yeon Lee ◽  
Seung-Young Park ◽  
...  

AbstractThe discovery of a thermally stable, high-density magnetic skyrmion phase is a key prerequisite for realizing practical skyrmionic memory devices. In contrast to the typical low-density Néel-type skyrmions observed in technologically viable multilayer systems, with Lorentz transmission electron microscopy, we report the discovery of a high-density homochiral Néel-type skyrmion phase in magnetic multilayer structures that is stable at high temperatures up to 733 K (≈460 °C). Micromagnetic simulations reveal that a high-density skyrmion phase can be stabilized at high temperature by deliberately tuning the magnetic anisotropy, magnetic field, and temperature. The existence of the high-density skyrmion phase in a magnetic multilayer system raises the possibility of incorporating chiral Néel-type skyrmions in ultrahigh-density spin memory devices. Moreover, the existence of this phase at high temperature shows its thermal stability, demonstrating the potential for skyrmion devices operating in thermally challenging modern electronic chips.


SPE Journal ◽  
2018 ◽  
Vol 24 (05) ◽  
pp. 2033-2046 ◽  
Author(s):  
Hu Jia ◽  
Yao–Xi Hu ◽  
Shan–Jie Zhao ◽  
Jin–Zhou Zhao

Summary Many oil and gas resources in deep–sea environments worldwide are often located in high–temperature/high–pressure (HT/HP) and low–permeability reservoirs. The reservoir–pressure coefficient usually exceeds 1.6, with formation temperature greater than 180°C. Challenges are faced for well drilling and completion in these HT/HP reservoirs. A solid–free well–completion fluid with safety density greater than 1.8 g/cm3 and excellent thermal endurance is strongly needed in the industry. Because of high cost and/or corrosion and toxicity problems, the application of available solid–free well–completion fluids such as cesium formate brines, bromine brines, and zinc brines is limited in some cases. In this paper, novel potassium–based phosphate well–completion fluids were developed. Results show that the fluid can reach the maximum density of 1.815 g/cm3 at room temperature, which makes a breakthrough on the density limit of normal potassium–based phosphate brine. The corrosion rate of N80 steel after the interaction with the target phosphate brine at a high temperature of 180°C is approximately 0.1853 mm/a, and the regained–permeability recovery of the treated sand core can reach up to 86.51%. Scanning–electron–microscope (SEM) pictures also support the corrosion–evaluation results. The phosphate brine shows favorable compatibility with the formation water. The biological toxicity–determination result reveals that it is only slightly toxic and is environmentally acceptable. In addition, phosphate brine is highly effective in inhibiting the performance of clay minerals. The cost of phosphate brine is approximately 44 to 66% less than that of conventional cesium formate, bromine brine, and zinc brine. This study suggests that the phosphate brine can serve as an alternative high–density solid–free well–completion fluid during well drilling and completion in HT/HP reservoirs.


2002 ◽  
Vol 20 (5) ◽  
pp. 1808-1814 ◽  
Author(s):  
Gyeo-Re Lee ◽  
Sung-Wook Hwang ◽  
Jae-Ho Min ◽  
Sang Heup Moon

Author(s):  
Mohammed Shahien

Thermal spraying is a well-known coating technology with many variations in spraying techniques, feedstock materials and substrate materials. These unique variations increased its industrial applicability in different fields, including aerospace, automotive, chemical process, corrosion protection, and medical applications. However, one of the main limitations of thermal spray is the difficulty of depositing several nitride ceramics directly using conventional techniques. This is due to the decomposition of nitride particles under high temperature without a stable melting phase. This chapter presents reactive plasma spraying (RPS) technology as a promising solution for the in situ fabrication of several nitride ceramic coatings. The main attractive prospects of RPS for fabricating nitride coatings are specifically highlighted. Successful development of various high-temperature nitride coatings, such as AlN, Fe4N and Si3N4, are presented. Process optimization, the relationship between reaction and process parameters and the influence on coatings formation are comprehensively discussed.


2014 ◽  
Vol 2014 (1) ◽  
pp. 000905-000911
Author(s):  
Doug Shelton ◽  
Tomii Kume ◽  
Charles Wang ◽  
Alex Hubbard ◽  
Cody Murray ◽  
...  

Advanced process technology is required to develop and enable mass production of high-density 3D and 2.5D interconnect technologies. In this paper, Canon and IBM @ Albany NanoTech will present process optimization results for lithography applications requiring precise thick-resist profile control and precise overlay accuracy of distorted patterns on bonded process wafers. Canon will also provide additional product updates from Canon Anelva.


2013 ◽  
Vol 2013 (HITEN) ◽  
pp. 000254-000259 ◽  
Author(s):  
Fumiki Kato ◽  
Fengqun Lang ◽  
Simanjorang Rejeki ◽  
Hiroshi Nakagawa ◽  
Hiroshi Yamaguchi ◽  
...  

In this work, a novel precise chip joint method using sub-micron Au particle for high-density silicon carbide (SiC) power module operating at high temperature is proposed. A module structure of SiC power devices are sandwiched between two silicon nitride-active metal brazed copper (SiN-AMC) circuit boards. To make a precise position and height control of the chip bonding, the top side (gate/source or anode pad side) of SiC power devices are flip-chip bonded to circuit electrodes using sub-micron Au particle with low temperature (250°C) and pressure-less sintering. The accuracy of the bonding position of chips was less than 10 μm and the accuracy of the height after bonding chips was less than 15 μm. Mechanical shear fatigue tests for flip-chip bonded SiC Schottky barrier diode (SBD) were carried out. As a result, initial shear strength of the joint was 36 MPa. The shear strength of 43 MPa is obtained after storage life test (500 hours at 250°C), and also 35 MPa is obtained even after thermal cycle stress test (1000 cycles between −40°C and 250°C). The flip-chip bonding of SiC-JFET is successfully realizedon the substrate without short or open failure electrically. Finally we joint the backside of the SiC-JFET (drain side) and the SiC-SBD (cathode side) to each circuit electrodes at once by means of reflow process with Au-12%Ge solder. The structured sandwich SiC power module was also successfully formed.


RSC Advances ◽  
2020 ◽  
Vol 10 (53) ◽  
pp. 32265-32275
Author(s):  
Pan Zhang ◽  
Ye Wang ◽  
Yi-rui Shu ◽  
Yan-jun Zhong ◽  
Wei Wang ◽  
...  

Applications of high density carbon plates that are high-temperature pressed using material resistance.


Sign in / Sign up

Export Citation Format

Share Document