Diffusion and Defect Structure in Nitrogen Implanted Silicon

2001 ◽  
Vol 669 ◽  
Author(s):  
Omer Dokumaci ◽  
Richard Kaplan ◽  
Mukesh Khare ◽  
Paul Ronsheim ◽  
Jay Burnham ◽  
...  

ABSTRACTNitrogen diffusion and defect structure were investigated after medium to high dose nitrogen implantation and anneal. 11 keV N2+ was implanted into silicon at doses ranging from 2×1014 to 2×1015 cm−2. The samples were annealed with an RTA system from 750°C to 900°C in a nitrogen atmosphere or at 1000°C in an oxidizing ambient. Nitrogen profiles were obtained by SIMS, and cross-section TEM was done on selected samples. TOF-SIMS was carried out in the oxidized samples. For lower doses, most of the nitrogen diffuses out of silicon into the silicon/oxide interface as expected. For the highest dose, a significant portion of the nitrogen still remains in silicon even after the highest thermal budget. This is attributed to the finite capacity of the silicon/oxide interface to trap nitrogen. When the interface gets saturated by nitrogen atoms, nitrogen in silicon can not escape into the interface. Implant doses above 7×1014 create continuous amorphous layers from the surface. For the 2×1015 case, there is residual amorphous silicon at the surface even after a 750°C 2 min anneal. After the 900°C 2 min anneal, the silicon fully recrystallizes leaving behind stacking faults at the surface and residual end of range damage.

1999 ◽  
Vol 568 ◽  
Author(s):  
Lahir Shaik Adam ◽  
Mark E. Law ◽  
Omer Dokumaci ◽  
Yaser Haddara ◽  
Cheruvu Murthy ◽  
...  

ABSTRACTNitrogen implantation can be used to control gate oxide thicknesses [1,2]. This study aims at studying the fundamental behavior of nitrogen diffusion in silicon. Nitrogen at sub-amorphizing doses has been implanted as N2+ at 40 keV and 200 keV into Czochralski silicon wafers. Furnace anneals have been performed at a range of temperatures from 650°C through 1050°C. The resulting annealed profiles show anomalous diffusion behavior. For the 40 keV implants, nitrogen diffuses very rapidly and segregates at the silicon/ silicon-oxide interface. Modeling of this behavior is based on the theory that the diffusion is limited by the time to create a mobile nitrogen interstitial.


1986 ◽  
Vol 74 ◽  
Author(s):  
M. K. El-Ghor ◽  
S. J. Pennycook ◽  
T. P. Sjoreen ◽  
J. Narayan

AbstractHigh doses of oxygen were implanted in silicon to produce stoichiometric buried oxide structures. Microstructural analysis was performed using transmission electron microscopy, electron energy loss spectroscopy, and Rutherford backscattering/channeling techniques. Cavities were observed in the top silicon layers of the as-implanted samples in two forms: spherical cavities (30–300 Å in diameter) in the first 1000 Å below the surface, followed by a 500 Å wide lamellar array of elongated cavities. A post implantation annealing was carried out at temperatures between 1150°C and 1250°C for 3 h during which the cavities became faceted and a denuded zone of 400 Å was formed. However, with a 1300°C anneal the cavities disappeared and the density of the two prominent types of defects, namely precipitates (mostly amorphous, but occasionally crystalline) and dislocations, decreased significantly. The silicon-oxide interface became increasingly planar. Possible mechanisms of annealing of the cavities, the precipitates, and the associated planarization of the interface are proposed.


Author(s):  
P. Singh ◽  
V. Cozzolino ◽  
G. Galyon ◽  
R. Logan ◽  
K. Troccia ◽  
...  

Abstract The time delayed failure of a mesa diode is explained on the basis of dendritic growth on the oxide passivated diode side walls. Lead dendrites nucleated at the p+ side Pb-Sn solder metallization and grew towards the n side metallization. The infinitesimal cross section area of the dendrites was not sufficient to allow them to directly affect the electrical behavior of the high voltage power diodes. However, the electric fields associated with the dendrites caused sharp band bending near the silicon-oxide interface leading to electron tunneling across the band gap at velocities high enough to cause impact ionization and ultimately the avalanche breakdown of the diode. Damage was confined to a narrow path on the diode side wall because of the limited influence of the electric field associated with the dendrite. The paper presents experimental details that led to the discovery of the dendrites. The observed failures are explained in the context of classical semiconductor physics and electrochemistry.


2018 ◽  
Vol 36 (1) ◽  
pp. 01A116 ◽  
Author(s):  
Evan Oudot ◽  
Mickael Gros-Jean ◽  
Kristell Courouble ◽  
Francois Bertin ◽  
Romain Duru ◽  
...  

1997 ◽  
Vol 36 (Part 1, No. 3B) ◽  
pp. 1622-1626 ◽  
Author(s):  
K. Z. Zhang ◽  
Leah M. Meeuwenberg ◽  
Mark M. Banaszak Holl ◽  
F. R. McFeely

1987 ◽  
Vol 105 ◽  
Author(s):  
Kyung-Ho Park ◽  
T. Sasaki ◽  
S. Matsuoka ◽  
M. Yoshida ◽  
M. Nakano

AbstractInterfaces between two kind of substrate, a bulk silicon wafer and a laser-recrystallized Silicon-On-Insulator (SOI), and its thermally grown oxide have been studied. High resolution transmission electron microscopy (HRTEM) of cross sectional specimen shows that the roughness at the interface is atomically flat and nearly uniform for the bulk single crystal silicon and silicon oxide, while being nonuniform and rough as much as 20 nm height for the recrystallized silicon and silicon oxide interface. Consideration of interface between recrystallized silicon and silicon oxide, and the oxide surface above, the observed roughness at the interface is due to original grain boundaries of polycrystalline silicon which was used as the material for the laser recrystallized silicon formation. It is also discussed HRTEM of the interface between polycrystalline silicon and silicon oxide.


2004 ◽  
Vol 810 ◽  
Author(s):  
Nina Burbure ◽  
Kevin S. Jones

ABSTRACTPattern induced defects during advanced CMOS processing can lead to lower quality devices with high leakage currents. Within this study, the effects of oxide trenches on implant related defect formation and evolution in silicon patterned wafers is examined. Oxide filled trenches approximately 4000Å deep were patterned into 300 mm <100> silicon wafers. Patterning was followed by ion implantation of Si+ at energies ranging from 10 to 80 keV. Samples were amorphized with doses of 1×1015 atoms/cm2, 5×1015 atoms/cm2, and 1×1016 atoms/cm2. Two independent repeating structures were studied. The first structure is comprised of silicon oxide filled trench lines, 3.7μm wide spaced 12.5μm apart, while the second structure contains silicon squares, 0.6μm on a side, surrounded by a silicon oxide filled trench. Cross- sectional and planar view transmission electron microscopy (TEM) samples were used to examine the defect morphology after annealing at temperatures ranging from 700°C to 950°C and at times between 1 second and 1 minute. Following complete regrowth, an array of defects was observed to form near the surface at the silicon/silicon oxide interface. These trench edge defects appeared to nucleate at the amorphous-crystalline interface for all energies and doses studied. Upon a spike anneal at 700°C, it was observed that regrowth of the amorphous layer had completed except in the region near the trench edge. Thus, it is believed that this defect results from the pinning of the amorphous-crystalline interface along the trench edge during solid phase epitaxial regrowth (SPER).


Sign in / Sign up

Export Citation Format

Share Document