Chemical Vapor Deposition (CVD) of Tungsten Nitride for Copper Diffusion Barriers

2001 ◽  
Vol 714 ◽  
Author(s):  
Roy G. Gordon ◽  
Jeffrey Barton ◽  
Seigi Suh

ABSTRACTA new process was developed for deposition of the tungsten nitride at moderate substrate temperatures (350-400 °C). The tungsten source bis (tert-butylamido)bis(tertbutylimido) tungsten, (tBuNH)2(tBuN)2W, reacts with ammonia in a low-pressure CVD reactor. Growth rates ranged from about 0.6 to 4.1 nm per minute. The stoichiometry of the films varied from WN1.2O1.7 to WN1.6o0.25, depending mainly on deposition temperature. The films are amorphous by X-ray diffraction, and smooth by scanning electron microscopy. Step coverage is nearly 100% in vias with an aspect ratio of 6:1 for films deposited at 400 °C or lower. Barriers 45 nm thick resist diffusion of copper up to temperatures of 600 °C. Adhesion is strong to all substrates tested, including silicon, silicon dioxide, soda-lime glass, glassy carbon, aluminum and stainless steel. This new halogen-free process avoids halogen contamination of films and corrosion of equipment. Uniformity of thickness and stoichiometry are readily achieved. This process is a promising method for forming copper diffusion barriers in future generations of microelectronics.

2013 ◽  
Vol 291-294 ◽  
pp. 703-707
Author(s):  
Gui Shan Liu ◽  
Hao Na Li ◽  
Xiao Yue Shen ◽  
Zhi Qiang Hu ◽  
Hong Shun Hao

CIGS thin films were deposited on soda lime glass by one-step magnetron sputtering using a single quaternary-CIGS target in stoichiometric proportions. The influences of substrate temperature on the structural, optical, and electrical properties of Cu(In,Ga)Se2 (CIGS) thin films were investigated. The phase structure of CIGS thin films was characterized by X-ray diffraction (XRD). The morphology and thickness of CIGS thin films were observed by Scanning Electron Microscope (SEM). The absorption coefficient of CIGS thin films was measured by Ultraviolet-visible Spectrophotometer. Four-point probe method was used to test the resistivity of CIGS thin films. Based on the results of characterization, the increase in crystallite size of CIGS was found to be significantly noticeable with increasing substrate temperature. UV-vis measurement analysis suggested that CIGS thin films deposited at different substrate temperatures had high absorption coefficient (~104 cm-1) and optical band gap (1.07-1.23 eV). The substrate temperature dependence of the resistivity of the films indicated that the resistivity of the films fall to about 0.5 Ω۰cm as the substrate glass was heated up to 300 °C.


2001 ◽  
Vol 16 (2) ◽  
pp. 394-399 ◽  
Author(s):  
S. Nishiwaki ◽  
T. Satoh ◽  
Y. Hashimoto ◽  
T. Negami ◽  
T. Wada

Cu(In,Ga)Se2(CIGS) thin films were prepared at substrate temperatures of 350 to 500 °C. The (In,Ga)2Se2 precursor layers were deposited on Mo coated soda-lime glass and then exposed to Cu and Se fluxes to form CIGS films. The surface composition was probed by a real-time composition monitoring method. The CIGS films were characterized by x-ray diffraction, energy dispersive x-ray spectroscopy, secondary ion mass spectroscopy, and atomic force microscopy. The transient formation of a Cu–Se phase with a high thermal emissivity was observed during the deposition of Cu and Se at a substrate temperature of 350 °C. Faster diffusion of In than Ga from the (In,Ga)2Se3 precursor to the newly formed CIGS layer was observed. A growth model for CIGS films during the deposition of Cu and Se onto (In,Ga)2Se3 precursor is proposed. A solar cell using a CIGS film prepared at about 350 °C showed an efficiency of 12.4%.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Wei Si ◽  
Hua-Shen Xu ◽  
Ming Sun ◽  
Chao Ding ◽  
Wei-Yi Zhang

During isothermal sintering at 820°C, the transformation mechanism of fluormica to fluoramphibole in powder compacts of fluormica and soda-lime glass was investigated using differential thermal analysis, infrared reflection spectrometry, X-ray diffraction, scanning electron microscopy, and so forth. Results show that an interaction between fluormica and glass occurred during isothermal heating; O2−, Na+, and Ca2+ions were diffused from glass to fluormica. This diffusion facilitates the transformation of the sheet structures of fluormica crystals to double-chain structures by the breakage of bridge oxygen bonds in the sheet. Subsequently, the broken two parallel double chains were rearranged by relative displacement along thec-axis direction of the fluormica crystal and were linked by Na+and Ca2+ions to form fluoramphibole. A crystallography model of fluormica-fluoramphibole transformation was established in this study.


2005 ◽  
Vol 862 ◽  
Author(s):  
Kanji Yasui ◽  
Jyunpei Eto ◽  
Yuzuru Narita ◽  
Masasuke Takata ◽  
Tadashi Akahane

AbstractThe crystal growth of SiC films on (100) Si and thermally oxidized Si (SiO2/Si) substrates by hot-mesh chemical vapor deposition (HMCVD) using monomethylsilane as a source gas was investigated. A mesh structure of hot tungsten (W) wire was used as a catalyzer. At substrate temperatures above 750°C and at a mesh temperature of 1600°C, 3C-SiC crystal was epitaxially grown on (100) Si substrates. From the X-ray rocking curve spectra of the (311) peak, SiC was also epitaxially grown in the substrate plane. On the basis of the X-ray diffraction (XRD) measurements, on the other hand, the growth of (100)-oriented 3C-SiC films on SiO2/Si substrates was determined to be achieved at substrate temperatures of 750-800°C, while polycrystalline SiC films, at substrate temperatures above 850°C. From the dependence of growth rate on substrate temperature and W-mesh temperature, the growth mechanism of SiC crystal by HMCVD was discussed.


2014 ◽  
Vol 1004-1005 ◽  
pp. 774-777 ◽  
Author(s):  
Ji Wan Liu ◽  
Gui Lin Chen ◽  
Wei Feng Liu ◽  
Guo Shun Jiang ◽  
Chang Fei Zhu

A low-cost non-vacuum process for fabrication of Cu2SnSe3 film by sol-gel method and knife-coating process is described. First, a certain amount of Copper (I) chloride and tin (IV) tetrachloride was dissolve into the mixture of water and alcohol and then some Polyvinyl Pyrrolidone (PVP) was added to the solution to obtain based colloidal solution. Next, precursor thin layer was deposited by knife-blading technique on soda-lime glass (SLG). Finally, precursor layer was annealed at selenium flow atmosphere carried by Ar gas at 550oC. Through X-ray diffraction (XRD) and Raman spectra, it is found that pure Cu2SnSe3 film was prepared successfully. Scanning electron microscopy (SEM) and UV–vis–NIR absorbance spectroscopy were used to characterize its morphology and optical bandgap.


2015 ◽  
Vol 22 (01) ◽  
pp. 1550009
Author(s):  
YA MING SUN ◽  
DONG LONG ◽  
XIANG CHENG MENG ◽  
ZHONG HUA ◽  
BO LI ◽  
...  

Cu 2 ZnSnS 4 thin films were prepared on soda-lime glass by sulfurization of the Cu / Sn / ZnS precursors. The microstructure, morphology and optical properties of the films were investigated by X-ray diffraction (XRD), Raman scattering (Raman), scanning electron microscopy (SEM) and UV-visible spectrophotometer (UV-Vis). The SEM images of the precursor and the thin films annealed at different temperatures are very different due to their different surface products. The absorption spectrum shifts to high-wave band region with increasing annealing temperatures. The precursor thin film annealed at 500°C for 2 h forms a single CZTS phase with kesterite structure and the bandgap is estimated to be 1.54 eV.


2005 ◽  
Vol 81 (5) ◽  
pp. 1065-1071 ◽  
Author(s):  
F. Gonella ◽  
A. Quaranta ◽  
S. Padovani ◽  
C. Sada ◽  
F. D’Acapito ◽  
...  

2012 ◽  
Vol 528 ◽  
pp. 214-218
Author(s):  
Han Bin Wang ◽  
Xi Jian Zhang ◽  
Qing Pu Wang ◽  
Xue Yan Zhang ◽  
Xiao Yu Liu

CIGS thin films were prepared by selenization of Cu-In-Ga-Se precursors, as a new method, the effects of selenization temperature on the properties of CIGS thin films were studied. First, Cu-In-Ga-Se precursors were deposited onto Mo-coated soda lime glass by evaporation and sputtering method. Then, precursors were selenized at various temperatures in N2 atmosphere for 120 min to form CIGS thin films. The degree of reaction and morphology of films as a function of selenization temperature were analyzed. By means of field emission scanning electron microscope (SEM) and X-ray diffraction (XRD), it was found that CIGS thin films selenized at 450°C exhibit chalcopyrite phase with preferred orientation along the (112) plane.


2001 ◽  
Vol 697 ◽  
Author(s):  
Ulrike Futschik ◽  
Harry Efstathiadis ◽  
James Castracane ◽  
Alain E. Kaloyeros ◽  
Leo Macdonald ◽  
...  

AbstractSilicon carbide (SiC) films have been successfully deposited on various substrates by oligomer thermal chemical vapor deposition (OTCVD) from a novel, halogen free, oligomer precursor family of polysilyenemethylenes (PSMs) called SP-4000. The high quality films were grown at substrate temperatures in the range of 620°C to 850°C and at process pressures in the range of 1 - 200Torr. SP-4000 is a silicon carbide precursor with formula [-SiH2-CH2-]n, n=2-8, composed of an alternating silicon and carbon backbone with hydrogen side groups. Depositions on Si and graphite substrates yielded SiC films with Si/C ratios in the range 1.1 to 1.2 and thicknesses in the range 0.3 to 50μm.Structural and chemical characterizations were performed by Auger electron spectroscopy (AES), x-ray diffraction (XRD), nuclear reaction analysis (NRA), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM).The SiC coatings deposited at substrate temperatures below 1100°C were found to be amorphous. Ex-situ, post deposition annealing in inert gas ambient above 1100°C converted the SiC films to a polycrystalline phase.


Sign in / Sign up

Export Citation Format

Share Document