Surface Roughness Evolution in Amorphous Tantalum Oxide Films Deposited by Pulsed Reactive Sputtering

2002 ◽  
Vol 749 ◽  
Author(s):  
Pushkar Jain ◽  
Jasbir S. Juneja ◽  
Tansel Karabacak ◽  
Eugene J. Rymaszewski ◽  
Toh –Ming Lu

ABSTRACTThe growth front roughness of Ta2O5 amorphous films grown by pulsed plasma d.c. reactive sputtering has been investigated using atomic force microscopy. Film deposition during reactive sputter deposition is explained based on dynamic scaling hypothesis in which both time and space scaling are considered simultaneously. The interface width w increases as a power law with deposition time t, w ∼ tβ, with β = 0.45 ± 0.03. The lateral correlation length ξ grows as ξ ∼ t1/z, with 1/z = 0.61 ± 0.07. The roughness exponent extracted from the slope of height-height correlation analysis is α = 0.79 ± 0.04. The results are similar to that obtained by sputtering of elemental materials, and do not fit to any of the presently known growth models. Monte Carlo simulations were carried out based on a recently developed re-emission model, where incident flux distribution, shadowing, sticking coefficient, and surface diffusion mechanisms were accounted for in the deposition process. An important finding is that sticking coefficient must be less than unity to obtain the observed β value (∼0.45).

1999 ◽  
Author(s):  
Seok Chung ◽  
Jun Keun Chang ◽  
Dong Chul Han

Abstract To make some MF.MS devices such as sensors and actuators be useful in the medical application, it is required to integrate this devices with power or sensor lines and to keep the hole devices biocompatible. Integrating micro machined sensors and actuators with conventional copper lines is incompatible because the thin copper lines are not easy to handle in the mass production. To achieve the compatibility of wiring method between MEMS devices, we developed the thin metal film deposition process that coats micropattered thin copper films on the non silicon-wafer substrate. The process was developed with the custom-made three-dimensional thin film sputter/evaporation system. The system consists of process chamber, two branch chambers, substrate holder unit and linear/rotary motion feedthrough. Thin metal film was deposited on the biocompatible polymer, polyurethane (PellethaneR) and silicone, catheter that is 2 mm in diameter and 1,000 mm in length. We deposited Cr/Cu and Ti/Cu layer and made a comparative study of the deposition processes, sputtering and evaporation. The temperature of both the processes were maintained below 100°C, for the catheter not melting during the processes. To use the films as signal lines connect the signal source to the actuator on the catheter tip, we machined the films into desired patterns with the eximer laser. In this paper, we developed the thin metal film deposition system and processes for the biopolymeric substrate used in the medical MEMS devices.


2013 ◽  
Vol 1538 ◽  
pp. 275-280
Author(s):  
S.L. Rugen-Hankey ◽  
V. Barrioz ◽  
A. J. Clayton ◽  
G. Kartopu ◽  
S.J.C. Irvine ◽  
...  

ABSTRACTThin film deposition process and integrated scribing technologies are key to forming large area Cadmium Telluride (CdTe) modules. In this paper, baseline Cd1-xZnxS/CdTe solar cells were deposited by atmospheric-pressure metal organic chemical vapor deposition (AP-MOCVD) onto commercially available ITO coated boro-aluminosilicate glass substrates. Thermally evaporated gold contacts were compared with a screen printed stack of carbon/silver back contacts in order to move towards large area modules. P2 laser scribing parameters have been reported along with a comparison of mechanical and laser scribing process for the scribe lines, using a UV Nd:YAG laser at 355 nm and 532 nm fiber laser.


2020 ◽  
Author(s):  
Laurent Souqui ◽  
Justinas Palisaitis ◽  
Hans Högberg ◽  
Henrik Pedersen

<div> <p>Amorphous boron-carbon-nitrogen (B-C-N) films with low density are potentially interesting as alternative low-dielectric-constant (low-κ) materials for future electronic devices. Such applications require deposition at temperatures below 300 °C, making plasma chemical vapor deposition (plasma CVD) a preferred deposition method. Plasma CVD of B-C-N films is today typically done with separate precursors for B, C and N or with precursors containing B–N bonds and an additional carbon precursor. We present an approach to plasma CVD of B-C-N films based on triethylboron (B(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>) a precursor with B-C bonds in an argon-nitrogen plasma. From quantitative analysis with Time-of-Flight Elastic Recoil Detection Analysis (ToF-ERDA), we find that the deposition process can afford B-C-N films with a B/N ratio between 0.98 and 1.3 and B/C ratios between 3.4 and 8.6 and where the films contain between 3.6 and 7.8 at. % H and 6.6 and 20 at. % of O. The films have low density, from 0.32 to 1.6 g/cm<sup>3</sup> as determined from cross-section scanning electron micrographs and ToF-ERDA with morphologies ranging from smooth films to separated nanowalls. Scaning transmission electron microscopy shows that C and BN does not phase seperarte in the film. The static dielectric constant κ, measured by capacitance–voltage measurements<b>,</b> varies with the Ar concentration in the range from 3.3 to 35 for low and high Ar concentrations, respectively. We suggest that this dependence is caused by the energetic bombardment of plasma species during film deposition.</p> </div> <br>


2012 ◽  
Vol 1447 ◽  
Author(s):  
P. Nozar ◽  
G. Mittica ◽  
S. Milita ◽  
C. Albonetti ◽  
F. Corticelli ◽  
...  

ABSTRACTCdTe and CdS are emerging as the most promising materials for thin film photovoltaics in the quest of the achievement of grid parity. The major challenge for the advancement of grid parity is the achievement of high quality at the same time as low fabrication cost. The present paper reports the results of the new deposition technique, Pulsed Plasma Deposition (PPD), for the growth of the CdTe layers on CdS/ZnO/quartz and quartz substrates. The PPD method allows to deposit at low temperature. The optical band gap of deposited layers is 1.50 eV, in perfect accord with the value reported in the literature for the crystalline cubic phase of the CdTe.The films are highly crystalline with a predominant cubic phase, a random orientation of the grains of the film and have an extremely low surface roughness of 4.6±0.7 nm r.m.s.. The low roughness, compared to traditional thermal deposition methods (close space sublimation and vapour transport) permits the reduction of the active absorber and n-type semiconductor layers resulting in a dramatic reduction of material usage and the relative deposition issues like safety, deposition rate and ultimately cost


1996 ◽  
Vol 441 ◽  
Author(s):  
Sung-Tae Kim ◽  
Hyun-Ho Kim ◽  
Moon-Yong Lee ◽  
Won-Jong Lee

AbstractPerovskite-phase lead zirconate titanate (PZT) thin films were fabricated at 4751C by the electron cyclotron resonance (ECR) plasma enhanced DC magnetron multi-target reactive sputtering method on Pt/Ti/SiO2/Si and Pt/SiO2/Si substrates. Stoichiometric perovskite PZT films were readily obtained on Pt/Ti/SiO2/Si substrates because Ti atoms which were out-diffused to the Pt surface facilitated Pb incorporation by forming lead titanate at the early stage of deposition process. Activation of oxygen by ECR plasma facilitated the oxidation reaction and Pb incorporation into the film. Thus perovskite-phase PZT can be obtained on the Pt/SiO2/Si substrate.


Author(s):  
Monoj Kumar Singha ◽  
Vineet Rojwal

Thin film is used for sensing and electronic devices applications. Various techniques are used for thin film deposition. This chapter presents the Spray pyrolysis deposition technique used for the growth of thin films sensing and device material. Spray pyrolysis is an inexpensive method to grow good crystalline thin film compared to other thin film deposition techniques. The chapter gives an overview of the spray process used for thin film deposition. Basic setup for this process is explained. Parameters affecting the deposition process is explained, as are the various spray methods. Finally, some examples of spray pyrolysis in different applications like a gas sensor, UV photodetector, solar cell, photocatalysis, and supercapacitor are discussed.


Author(s):  
Hong Liu

This chapter mainly introduces five basic stages of the film deposition process (vapor adsorption, surface diffusion, reaction between adsorbed species, reaction of film materials to form bonding surface, and nucleation and microstructure formation), analyzes the influence of deposition process parameters on the three basic growth modes of the film, focuses on the relationship between the control parameters of homoepitaxy and heteroepitaxy and the film structure, gives the dynamic characteristics of each growth stage, and examines the factors determining epitaxy film structure, topography, interfacial properties, and stress. It is shown that two-dimensional nucleation is a key to obtain high-quality epitaxial films.


1988 ◽  
Vol 117 ◽  
Author(s):  
Kenji Ebihara ◽  
Seiji Kanazawa ◽  
Sadao Maeda

AbstractProcessing plasmas generated by three types of discharges are diagnosed spectroscopically in order to estimate the quantitative relationship between plasma parameters and electrical and optical properties of deposited materials. An rf discharge is capacitively produced by a 13.56 MHz rf oscillator. A microwave generator operating at 2.45 GHz is used to supply power to a discharge cavity. Further a pulsed plasma which is inductively generated by pulsed current ( 70 kA peak ) is applied to study dissociation process in the transient plasma and possibility of a novel processing system. The gases used are methane for amorphous carbon formation and silane for amorphous silicon deposition. Measurements of optical emission spectrum are performed to estimate the processing plasma state by the relative spectral intensity method and the Doppler-broadening method.


2012 ◽  
Vol 2012 (10) ◽  
pp. P10014 ◽  
Author(s):  
Zhipeng Xun ◽  
Yongwei Zhang ◽  
Yan Li ◽  
Hui Xia ◽  
Dapeng Hao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document