Growth and Optical Properties of GaP, GaP@GaN and GaN@GaP Core-shell Nanowires

2003 ◽  
Vol 776 ◽  
Author(s):  
Hung-Min Lin ◽  
Jian Yang ◽  
Yong-Lin Chen ◽  
Yau-Chung Liu ◽  
Kai-Min Yin ◽  
...  

AbstractHigh-quality GaP, GaP@GaN and GaN@GaP nanowires were grown by a convenient vapor deposition technique. The wire-like and two-layers structures of GaP@GaN and GaN@GaP core-shell nanowires were clearly resolved using X-ray powder diffraction and high-resolution transmission electron microscopy (HRTEM) and their growth directions were identified. Photoluminescence intensity of GaP@GaN nanowires increased as temperature increased. The result was interpreted by the piezoelectric effect induced from lattice mismatch between two semiconductor layers. An unexpected peak at 386 cm-1 was found in the Raman spectra of GaN@GaP and assigned to a surface phonon mode due to the interface. Detailed synthetic conditions and possible growth mechanisms of those nanowires were proposed.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Taher Ghrib ◽  
Muneera Abdullah Al-Messiere ◽  
Amal Lafi Al-Otaibi

ZnO nanowires of approximately 3 µm length and 200 nm diameter are prepared and implanted vertically on substrate glass which is coated with thin layer of ITO which is too covered with bulk ZnO thin layer via electrodeposition process by cyclic voltammetry-chronoamperometry and with a chemical process that is described later; we have synthesized a ZnS nanolayer. ZnO/ZnS core/shell nanowires are formed by ZnO nanowires core surrounded by a very thin layer of porous ZnS shell principally constituted with a crystal which is about 15–20 nm in diameter. In the method, ZnS nanoparticles were prepared by reaction of ZnO nanowires with Na2S in aqueous solution at low temperature and also we have discussed the growth mechanism of ZnO/ZnS nanowires. The morphology, structure, and composition of the obtained nanostructures were obtained by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). For the structure, SEM and XRD measurements indicated that the as-grown ZnO nanowires microscale was of hexagonal wurtzite phase with a high crystalline quality, and TEM shows that the ZnS is uniformly distributed on the surface of the ZnO nanowires.


2008 ◽  
Vol 8 (11) ◽  
pp. 5715-5719 ◽  
Author(s):  
Hyoun Woo Kim ◽  
Jong Woo Lee ◽  
Mesfin A. Kebede ◽  
Hyo Sung Kim ◽  
Buddhudu Srinivasa ◽  
...  

We have prepared MgO/Au core–shell nanowires, subsequently demonstrating the fabrication of Au nanotubes by using MgO nanowires as a sacrificial template. The samples were characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. MgO nanowires were coated with a conformal layer of Au via sputtering. By etching away the MgO core in aqueous (NH3)2SO4 solution, hollow nanotube-like structures of Au were readily obtained. This approach offers a potentially useful route for the fabrication of a variety of hollow metallic structures.


2004 ◽  
Vol 19 (4) ◽  
pp. 347-351
Author(s):  
J. Xu ◽  
X. S. Wu ◽  
B. Qian ◽  
J. F. Feng ◽  
S. S. Jiang ◽  
...  

Ge–Si inverted huts, which formed at the Si∕Ge interface of Si∕Ge superlattice grown at low temperatures, have been measured by X-ray diffraction, grazing incidence X-ray specular and off-specular reflectivities, and transmission electron microscopy (TEM). The surface of the Si∕Ge superlattice is smooth, and there are no Ge–Si huts appearing on the surface. The roughness of the surfaces is less than 3 Å. Large lattice strain induced by lattice mismatch between Si and Ge is found to be relaxed because of the intermixing of Ge and Si at the Si∕Ge interface.


2011 ◽  
Vol 306-307 ◽  
pp. 410-415
Author(s):  
Li Sun ◽  
Fu Tian Liu ◽  
Qi Hui Jiang ◽  
Xiu Xiu Chen ◽  
Ping Yang

Core/shell type nanoparticles with an average diameter of 20nm were synthesized by chemical precipitation method. Firstly, Monodisperse Fe3O4 nanoparticles were synthesized by solvethermal method. FeSO4ž7H2O and NaBH4 were respectively dissolved in distilled water, then moderated Fe3O4 particles and surfactant(PVP) were ultrasonic dispersed into the FeSO4ž7H2O solution. The resulting solution was stirred 2 h at room temperature. Fe could be deposited on the surface of monodispersed Fe3O4 nanoparticles to form core-shell particles. The particles were characterized by using various experimental techniques, such as transmission electron microscopy (TEM), X-ray diffraction (XRD), AGM and DTA. The results suggest that the saturation magnetization of the nanocomposites is 100 emu/g. The composition of the samples show monodisperse and the sides of the core/shell nanoparticles are 20-30nm. It is noted that the formation of Fe3O4/Fe nanocomposites magnetite nanoparticles possess superparamagnetic property.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Xiaowei Zhu ◽  
Kuisuo Yang ◽  
Anping Wu ◽  
He Bai ◽  
Jinrong Bao ◽  
...  

Abstract The novel submicro-spheres SiO2@LaPO4:Eu@SiO2 with core-shell-shell structures were prepared by connecting the SiO2 submicro-spheres and the rare earth ions through an organosilane HOOCC6H4N(CONH(CH2)3Si(OCH2CH3)3 (MABA-Si). The as-prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and infrared spectroscopy (IR). It is found that the intermediate shell of the submicro-spheres was composed by LaPO4:Eu nanoparticles with the size of about 4, 5–7, or 15–34 nm. A possible formation mechanism for the SiO2@LaPO4:Eu@SiO2 submicro-spheres has been proposed. The dependence of the photoluminescence intensity on the size of the LaPO4:Eu nanoparticles has been investigated. The intensity ratios of electrical dipole transition 5D0 → 7F2 to magnetic dipole transition 5D0 → 7F1 of Eu3+ ions were increased with decreasing the size of LaPO4:Eu nanoparticles. According to the Judd-Ofelt (J-O) theory, when the size of LaPO4:Eu nanoparticles was about 4, 5–7 and 15–34 nm, the calculated J-O parameter Ω2 (optical transition intensity parameter) was 2.30 × 10−20, 1.80 × 10−20 and 1.20 × 10−20, respectively. The increase of Ω2 indicates that the symmetry of Eu3+ in the LaPO4 lattice was gradually reduced. The photoluminescence intensity of the SiO2@LaPO4:Eu@SiO2 submicro-spheres was unquenched in aqueous solution even after 15 days.


NANO ◽  
2019 ◽  
Vol 14 (11) ◽  
pp. 1950138 ◽  
Author(s):  
Sai Zhang ◽  
Shijun Yue ◽  
Jiajia Li ◽  
Jianbin Zheng ◽  
Guojie Gao

Au nanoparticles anchored on core–shell [Formula: see text]-Fe2O3@SnO2 nanospindles were successfully constructed through hydrothermal synthesis process and used for fabricating a novel nonenzymatic dopamine (DA) sensor. The structure and morphology of the Au/[Formula: see text]-Fe2O3@SnO2 trilaminar nanohybrid film were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrochemical properties of the sensor were investigated by cyclic voltammetry and amperometry. The experimental results suggest that the composites have excellent catalytic property toward DA with a wide linear range from 0.5[Formula: see text][Formula: see text]M to 0.47[Formula: see text]mM, a low detection limit of 0.17[Formula: see text][Formula: see text]M (S/[Formula: see text]) and high sensitivity of 397.1[Formula: see text][Formula: see text]A[Formula: see text]mM[Formula: see text][Formula: see text]cm[Formula: see text]. In addition, the sensor exhibits long-term stability, good reproducibility and anti-interference.


2020 ◽  
Vol 131 (1) ◽  
pp. 119-128 ◽  
Author(s):  
Johann Kirchner ◽  
Christian Zambrzycki ◽  
Zeynep Baysal ◽  
Robert Güttel ◽  
Sven Kureti

Abstract Fe@SiO2 core–shell model catalysts were investigated for the conversion of CO2 and H2 into CH4, CO and H2O. For evaluation of the effect of core size on the catalytic activity, samples with Fe particle sizes of 4, 6 and 8 nm were prepared. Fresh and spent catalysts were thoroughly characterized by X-ray diffraction, 57Fe Mössbauer spectroscopy, transmission electron microscopy, temperature programmed hydrogenation and X-ray photoelectron spectroscopy. As a result, the yield of the major product CO as well as CH4 was increased with Fe core size. Additionally, growing Fe cores led to stronger carburization and higher amount of reactive carbide entities, which drive the CH4 formation. Finally, formation of inactive bulk carbon deposition is strongly suppressed for the core–shell catalysts in comparison to bulk iron oxide catalysts used for CO2 hydrogenation.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5047
Author(s):  
Jun Cao ◽  
Peng Wang ◽  
Jie Shen ◽  
Qi Sun

Here, using Fe3O4@SiO2 as a precursor, a novel core-shell structure magnetic Cu2+ adsorbent (Fe3O4@zeolite NaA) was successfully prepared. Several methods, namely X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), Transmission electron microscope (TEM), Brunauer Emmett Teller (BET) and vibrating sample magnetometry (VSM) were used to characterize the adsorbent. A batch experiment was conducted to study the Cu2+ adsorption capacity of Fe3O4@zeolite NaA at different pH values, contact time, initial Cu2+ concentration and adsorbent does. It is found that the saturated adsorption capacity of Fe3O4@zeolite NaA on Cu2+ is 86.54 mg/g. The adsorption isotherm analysis shows that the adsorption process of Fe3O4@zeolite NaA to Cu2+ is more consistent with the Langmuir model, suggesting that it is a monolayer adsorption. Adsorption kinetics study found that the adsorption process of Fe3O4@zeolite NaA to Cu2+ follows the pseudo-second kinetics model, which means that the combination of Fe3O4@zeolite NaA and Cu2+ is the chemical chelating reaction. Thermodynamic analysis shows that the adsorption process of Fe3O4@zeolite NaA to Cu2+ is endothermic, with increasing entropy and spontaneous in nature. The above results show that Fe3O4@zeolite NaA is a promising Cu2+ adsorbent.


2013 ◽  
Vol 274 ◽  
pp. 432-435
Author(s):  
Hong Xia Shen ◽  
Zheng Zhi Yin ◽  
Qiong Cheng

Superparamagnetic core/shell nanoparticles have been prepared successfully by the reduction of Au3+ onto the surface of superparamagnetic nanoparticles. The core/shell nanoparticles were characterized by Transmission electron microscopy (TEM), X-ray powder diffraction patterns (XRD), UV–vis spectrophotometer, Vibration Sample Magnetometer(VSM) and micro-confocal Raman system. The results revealed that the prepared core/shell nanoparticles were covered by Au shell. These superparamagnetic nanoparticles can be highly sensitively detected and afford new opportunities for biomedical applications through chemical bonding of bioactive molecules with the Au shell of nanoparticles.


2016 ◽  
Vol 16 (4) ◽  
pp. 3914-3920 ◽  
Author(s):  
G. Z Li ◽  
F. H Liu ◽  
Z. S Chu ◽  
D. M Wu ◽  
L. B Yang ◽  
...  

SiO2@Y2MoO6:Eu3+ core–shell phosphors were prepared by the sol–gel process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra as well as kinetic decays were used to characterize the resulting SiO2@Y2MoO6:Eu3+ core–shell phosphors. The XRD results demonstrated that the Y2MoO6:Eu3+ layers on the SiO2 spheres crystallized after being annealed at 700 °C and the crystallinity increased with raising the annealing temperature. The obtained core–shell phosphors have spherical shape with narrow size distribution (average size ca. 640 nm), non-agglomeration, and smooth surface. The thickness of the Y2MoO6:Eu3+ shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (70 nm for four deposition cycles). The Eu3+ shows a strong PL emission (dominated by 5D0–7F2 red emission at 614 nm) under the excitation of 347 nm UV light. The PL intensity of Eu3+ increases with increasing the annealing temperature and the number of coating cycles.


Sign in / Sign up

Export Citation Format

Share Document