Spatial separation mechanism in Si quantum dots deposited by chemical vapour deposition on SiO2

2003 ◽  
Vol 788 ◽  
Author(s):  
Rosaria A. Puglisi ◽  
Giuseppe Nicotra ◽  
Salvatore Lombardo ◽  
Corrado Spinella ◽  
Cosimo Gerardi

ABSTRACTA systematic study on the Si inter-dot distance after nucleation on silicon oxide substrates is presented. The process has been followed from the very early stages of the dot formation up to 25% of coverages. Structural characterization has been performed by means of energy filtered transmission electron microscopy, which allowed us to observe dot sizes down to 0.5 nm in radius. Silicon nanodots are shown to be surrounded by a depleted zone, where no new Si dots are observed to nucleate. The average size of such a zone ranges between 4 and 9 nm, depending on the deposition conditions. The dot radius is shown to be proportional to the depleted region size, thus indicating the scaling behaviour of the process.

2004 ◽  
Vol 830 ◽  
Author(s):  
Rosaria A. Puglisi ◽  
Giuseppe Nicotra ◽  
Salvatore Lombardo ◽  
Barbara De Salvo ◽  
Cosimo Gerardi

ABSTRACTA systematic study on the Si dot formation after chemical vapor deposition on silicon oxide substrates is presented. The process has been followed from the early stages of the dot formation up to 25% of coverages. Structural characterization has been performed by means of energy filtered transmission electron microscopy, which allowed us to observe dot sizes down to 0.5 nm in radius. The nanodots are shown to be surrounded by a depleted zone, where no new Si dots are observed to nucleate. This has been attributed to the adatoms capture mechanism by pre-existing dots, during the deposition. The dot radius and the capture size are shown to collapse onto the same curve, thus indicating the scaling behavior of the process. The adatom diffusion process is shown to restrict the number of nucleation sites, the final dot size and the dot position, thus driving the process toward partial self-order.


2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Galina Kholodnaya ◽  
Roman Sazonov ◽  
Denis Ponomarev ◽  
Igor Zhirkov

This paper presents a study on pulsed plasma-chemical synthesis of fluorine- and gold-doped silicon oxide nanopowder. The gold- and fluorine-containing precursors were gold chloride (AuCl3) and sulphur hexafluoride (SF6). Pulsed plasma-chemical synthesis is realized on the laboratory stand, including a plasma-chemical reactor and TEA-500 electron accelerator. The parameters of the electron beam are as follows: 400–450 keV electron energy, 60 ns half-amplitude pulse duration, up to 200 J pulse energy, and 5 cm beam diameter. We confirmed the composite structure of SixOy@Au by using transmission electron microscopy and energy-dispersive spectroscopy. We determined the chemical composition and morphology of synthesized SixOy@Au and SixOy@F nanocomposites. The material contained a SixOy@Au carrier with an average size of 50–150 nm and a shell of fine particles with an average size of 5–10 nm.


2013 ◽  
Vol 203-204 ◽  
pp. 228-231
Author(s):  
Jarosław Konieczny ◽  
Krzysztof Lukaszkowicz

The work presents the results on the microstructure of CrAlSiN+DLC coating deposited onto X40CrMoV5-1 hot work tool steel. The films were produced using a two-step method. In the first phase the physical vapour deposition (PVD) method was applied, whereas in the second Chemical Vapour Deposition (CVD) method was used. The microstructure and morphology of the CrAlSiN+DLC coating were analyzed by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) respectively. It was found that tested coatings have nanostructural character with fine crystallites, while their average size is between 11-25 nm. The TEM investigation showed a sharp interface between the coting and steel substrate. The AFM studies showed that the topography of the CrAlSiN and DLC layers were similar on the macroscopic scale


2003 ◽  
Vol 794 ◽  
Author(s):  
R.A. Puglisi ◽  
G. Nicotra ◽  
S. Lombardo ◽  
C. Spinella ◽  
G. Ammendola ◽  
...  

ABSTRACTNanoscale structures have been recently proposed as charge storage nodes due to their potential applications for future nanoscale memory devices. Our approach is based on the idea of using Si nanodots as discrete floating gates. To experimentally investigate such potential, we have fabricated MOS structures with Si nanocrystals. The dots have been deposited onto an ultra-thin tunnel oxide by chemical vapour deposition, and then annealed at 1000 °C for 40 s, to crystallize all the dots. After deposition the dots have been covered by a CVD SiO2 layer, thus resulting in dots completely embedded in stoichiometric silicon oxide. The nanocrystal density and size have been studied by energy filtered TEM (EFTEM) analysis. An electrostatic force microscope has been used to locally inject the charge. By applying a relatively large tip voltage a few dots have been charged, and the shift in the tip phase has been monitored. The shift in the phase is attributed to the presence of the charge in the sample. A comparison between n and p type samples is also shown.


2010 ◽  
Vol 61 (6) ◽  
pp. 373-377 ◽  
Author(s):  
Mária Čaplovičová ◽  
Ľubomír Čaplovič ◽  
Dalibor Búc ◽  
Peter Vinduška ◽  
Ján Janík

Carbon Nanostructures Grown on Fe-Cr-Al Alloy The morphology and nanostructure of carbon nanotubes (CNTs), synthesized directly on Fe-Cr-Al-based alloy substrate using an alcohol catalytic chemical vapour deposition method (ACCVD), were examined by transmission electron microscopy (TEM). The grown CNTs were entangled with chain-like, bamboo-like, and necklace-like morphologies. The CNT morphology was affected by the elemental composition of catalysts and local instability of deposition process. Straight and bended CNTs with bamboo-like nanostructure grew mainly on γ-Fe and Fe3C particles. The synthesis of necklace-like nanostructures was influenced by silicon oxide, and growth of chain-like nanostructures was supported by a catalysts consisting of Fe, Si, oxygen and trace of Cr. Most of nanotubes grew according to base growth mechanism.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1803
Author(s):  
Zhen Zheng ◽  
Junyang An ◽  
Ruiling Gong ◽  
Yuheng Zeng ◽  
Jichun Ye ◽  
...  

In this work, we report the same trends for the contact potential difference measured by Kelvin probe force microscopy and the effective carrier lifetime on crystalline silicon (c-Si) wafers passivated by AlOx layers of different thicknesses and submitted to annealing under various conditions. The changes in contact potential difference values and in the effective carrier lifetimes of the wafers are discussed in view of structural changes of the c-Si/SiO2/AlOx interface thanks to high resolution transmission electron microscopy. Indeed, we observed the presence of a crystalline silicon oxide interfacial layer in as-deposited (200 °C) AlOx, and a phase transformation from crystalline to amorphous silicon oxide when they were annealed in vacuum at 300 °C.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1426
Author(s):  
Tomáš Remiš ◽  
Petr Bělský ◽  
Tomáš Kovářík ◽  
Jaroslav Kadlec ◽  
Mina Ghafouri Azar ◽  
...  

In this work, advanced polymer nanocomposites comprising of polyvinyl alcohol (PVA) and nanodiamonds (NDs) were developed using a single-step solution-casting method. The properties of the prepared PVA/NDs nanocomposites were investigated using Raman spectroscopy, small- and wide-angle X-ray scattering (SAXS/WAXS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). It was revealed that the tensile strength improved dramatically with increasing ND content in the PVA matrix, suggesting a strong interaction between the NDs and the PVA. SEM, TEM, and SAXS showed that NDs were present in the form of agglomerates with an average size of ~60 nm with primary particles of diameter ~5 nm. These results showed that NDs could act as a good nanofiller for PVA in terms of improving its stability and mechanical properties.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 937
Author(s):  
Katarzyna Halubek-Gluchowska ◽  
Damian Szymański ◽  
Thi Ngoc Lam Tran ◽  
Maurizio Ferrari ◽  
Anna Lukowiak

Looking for upconverting biocompatible nanoparticles, we have prepared by the sol–gel method, silica–calcia glass nanopowders doped with different concentration of Tm3+ and Yb3+ ions (Tm3+ from 0.15 mol% up to 0.5 mol% and Yb3+ from 1 mol% up to 4 mol%) and characterized their structure, morphology, and optical properties. X-ray diffraction patterns indicated an amorphous phase of the silica-based glass with partial crystallization of samples with a higher content of lanthanides ions. Transmission electron microscopy images showed that the average size of particles decreased with increasing lanthanides content. The upconversion (UC) emission spectra and fluorescence lifetimes were registered under near infrared excitation (980 nm) at room temperature to study the energy transfer between Yb3+ and Tm3+ at various active ions concentrations. Characteristic emission bands of Tm3+ ions in the range of 350 nm to 850 nm were observed. To understand the mechanism of Yb3+–Tm3+ UC energy transfer in the SiO2–CaO powders, the kinetics of luminescence decays were studied.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3790
Author(s):  
Pratama Jujur Wibawa ◽  
Muhammad Nur ◽  
Mukhammad Asy’ari ◽  
Wijanarka Wijanarka ◽  
Heru Susanto ◽  
...  

This research aimed to enhance the antibacterial activity of silver nanoparticles (AgNPs) synthesized from silver nitrate (AgNO3) using aloe vera extract. It was performed by means of incorporating AgNPs on an activated carbon nanoparticle (ACNPs) under ultrasonic agitation (40 kHz, 2 × 50 watt) for 30 min in an aqueous colloidal medium. The successful AgNPs synthesis was clarified with both Ultraviolet-Visible (UV-Vis) and Fourier Transform Infrared (FTIR) spectrophotometers. The successful AgNPs–ACNPs incorporation and its particle size analysis was performed using Transmission Electron Microscope (TEM). The brown color suspension generation and UV-Vis’s spectra maximum wavelength at around 480 nm confirmed the existence of AgNPs. The particle sizes of the produced AgNPs were about 5 to 10 nm in the majority number, which collectively surrounded the aloe vera extract secondary metabolites formed core-shell like nanostructure of 8.20 ± 2.05 nm in average size, while ACNPs themselves were about 20.10 ± 1.52 nm in average size formed particles cluster, and 48.00 ± 8.37 nm in average size as stacking of other particles. The antibacterial activity of the synthesized AgNPs and AgNPs-immobilized ACNPs was 57.58% and 63.64%, respectively (for E. coli); 61.25%, and 93.49%, respectively (for S. aureus). In addition, when the AgNPs-immobilized ACNPs material was coated on the cotton and polyester fabrics, the antibacterial activity of the materials changed, becoming 19.23% (cotton; E. coli), 31.73% (polyester; E. coli), 13.36% (cotton; S. aureus), 21.15% (polyester; S. aureus).


Sign in / Sign up

Export Citation Format

Share Document