Structure and Dynamics of NaxCoO2 and the Hydrated Superconductor

2004 ◽  
Vol 840 ◽  
Author(s):  
J. W. Lynn ◽  
Q. Huang ◽  
R. J. Cava ◽  
Y. S. Lee

ABSTRACTThe properties of the NaxCoO2 class of materials are of interest from a number of viewpoints. These compounds are based on a triangular lattice of spin-½ ions—prototype RVB system— where a high thermoelectric-power Curie-Weiss metallic paramagnet is found for Na0.7CoO2, a charge ordered insulator at x=0.5, and a paramagnetic metal where superconductivity is induced in Na0.3CoO2 when it is intercalated with water. Here we briefly review our neutron diffraction and inelastic scattering measurements characterizing the crystal structure and lattice dynamics, and relate these to the observed physical properties. The basic structure of NaxCoO2 is hexagonal and consists of robust layers of CoO2 interspersed by Na layers with two inequivalent sites. Two special cases are x=1 where one of these sites is fully occupied and the other empty, and x=½ where both sites have equal occupancies of ¼ and the system is a charge ordered insulator. For general × the site occupancies are inequivalent and vary systematically with x. In the regime of x=0.75 we find a first-order transition from a high symmetry Na site at low T to a three-fold split site (with lower symmetry) at high T. This transition is first order and varies with x. For the Na0.3CoO2. 1.4(H/D)2O superconductor, the water forms two additional layers between the Na and CoO2, increasing the c -axis lattice parameter of the hexagonal P 63/mmc space group from 11.16 Å to 19.5 Å. The Na ions are found to occupy a different configuration from the parent compound, while the water forms a structure that replicates the structure of ice to a good approximation. We find a strong inverse correlation between the CoO2 layer thickness and the superconducting transition temperature (TC increases with decreasing thickness). The phonon density-of-states for Na0.3CoO2 exhibits distinct acoustic and optic bands, with a high-energy cutoff of ∼100 meV. The lattice dynamical scattering for the superconductor is dominated by the hydrogen modes, with librational and bending modes that are quite similar to ice, supporting the structural model that the water intercalates and forms ice-like layers in the superconductor.

2006 ◽  
Vol 62 (2) ◽  
pp. 228-235 ◽  
Author(s):  
Audrey Surmin ◽  
Pierre Fertey ◽  
Dominik Schaniel ◽  
Theo Woike

The structures of two specimens of the (K1 − y Na y )2F − 2(Sr x Ba1 − x )2 − F Nb2O6 family (KNSBN) have been solved and refined (x I = 0.6, y I = 0.45, F I = 1.07 and x II = 0.72, y II = 0.45, F II = 1.08). The KNSBN compounds appear to be incommensurately modulated, as described in a five-dimensional superspace approach with the tetragonal P4bm (pp1/2, p − p1/2) superspace group. Their modulation wavevectors are almost independent of the composition. The description of the modulation is restricted to first-order harmonics in order to limit the number of refined parameters. The modulation mainly affects the positions of the O atoms and their displacements depend on the Sr/Ba ratio. The structural models for the two compounds are not only almost identical, but also analoguous to the structural model of the Sr x Ba1 − x Nb2O6 parent compound: doping with K+ and Na+ cations has no significant influence on the incommensurate modulation, contrary to the strong dependence observed for the physical properties.


2016 ◽  
Vol 2 (3) ◽  
pp. e1501657 ◽  
Author(s):  
Carsten Putzke ◽  
Liam Malone ◽  
Sven Badoux ◽  
Baptiste Vignolle ◽  
David Vignolles ◽  
...  

Close to a zero-temperature transition between ordered and disordered electronic phases, quantum fluctuations can lead to a strong enhancement of electron mass and to the emergence of competing phases such as superconductivity. A correlation between the existence of such a quantum phase transition and superconductivity is quite well established in some heavy fermion and iron-based superconductors, and there have been suggestions that high-temperature superconductivity in copper-oxide materials (cuprates) may also be driven by the same mechanism. Close to optimal doping, where the superconducting transition temperature Tc is maximal in cuprates, two different phases are known to compete with superconductivity: a poorly understood pseudogap phase and a charge-ordered phase. Recent experiments have shown a strong increase in quasiparticle mass m* in the cuprate YBa2Cu3O7-δ as optimal doping is approached, suggesting that quantum fluctuations of the charge-ordered phase may be responsible for the high-Tc superconductivity. We have tested the robustness of this correlation between m* and Tc by performing quantum oscillation studies on the stoichiometric compound YBa2Cu4O8 under hydrostatic pressure. In contrast to the results for YBa2Cu3O7-δ, we find that in YBa2Cu4O8, the mass decreases as Tc increases under pressure. This inverse correlation between m* and Tc suggests that quantum fluctuations of the charge order enhance m* but do not enhance Tc.


2020 ◽  
Author(s):  
Michał Walicki

Abstract Graph normal form, introduced earlier for propositional logic, is shown to be a normal form also for first-order logic. It allows to view syntax of theories as digraphs, while their semantics as kernels of these digraphs. Graphs are particularly well suited for studying circularity, and we provide some general means for verifying that circular or apparently circular extensions are conservative. Traditional syntactic means of ensuring conservativity, like definitional extensions or positive occurrences guaranteeing exsitence of fixed points, emerge as special cases.


2021 ◽  
Vol 22 (9) ◽  
pp. 4803
Author(s):  
Eduardo Gomez ◽  
Ichiro Hisaki ◽  
Abderrazzak Douhal

Hydrogen-bonded organic frameworks (HOFs) are the focus of intense scientific research due their potential applications in science and technology. Here, we report on the synthesis, characterization, and photobehavior of a new HOF (T12F-1(124TCB)) based on a dehydrobenzoannulene derivative containing fluorine atoms (T12F-COOH). This HOF exhibits a 2D porous sheet, which is hexagonally networked via H-bonds between the carboxylic groups, and has an interlayers distance (4.3 Å) that is longer than that of a typical π–π interaction. The presence of the fluorine atoms in the DBA molecular units largely increases the emission quantum yield in DMF (0.33, T12F-COOH) when compared to the parent compound (0.02, T12-COOH). The time-resolved dynamics of T12F-COOH in DMF is governed by the emission from a locally excited state (S1, ~ 0.4 ns), a charge-transfer state (S1(CT), ~ 2 ns), and a room temperature emissive triplet state (T1, ~ 20 ns), in addition to a non-emissive triplet structure with a charge-transfer character (T1(CT), τ = 0.75 µs). We also report on the results using T12F-ester. Interestingly, FLIM experiments on single crystals unravel that the emission lifetimes of the crystalline HOF are almost twice those of the amorphous ones or the solid T12F-ester sample. This shows the relevance of the H-bonds in the photodynamics of the HOF and provides a strong basis for further development and study of HOFs based on DBAs for potential applications in photonics.


1994 ◽  
Vol 9 (2) ◽  
pp. 297-304 ◽  
Author(s):  
J.S. Luo ◽  
H.G. Lee ◽  
S.N. Sinha

The microstructure and superconducting properties of Bi2Sr2CaCu2Ox (Bi-2212) during high-energy attrition milling were investigated in detail by a combination of x-ray diffraction, scanning electron microscopy, transmission electron microscopy, and magnetization techniques. The starting superconducting powder was milled in a standard laboratory attritor using yttria-stabilized ZrO2 balls and a stainless steel tank. After selected time increments, the milling was interrupted and a small quantity of milled powder was removed for further analysis. It was found that the deformation process rapidly refines Bi-2212 into nanometer-size crystallites, increases atomic-level strains, and changes the plate-like morphology of Bi-2212 to granular submicron clusters. At short milling times, the deformation seems localized at weakly linked Bi-O double layers, leading to twist/cleavage fractures along the {001} planes. The Bi-2212 phase decomposes into several bismuth-based oxides and an amorphous phase after excessive deformation. The superconducting transition is depressed by about 10 K in the early stages of milling and completely vanishes upon prolonged deformation. A deformation mechanism is proposed and correlated with the evolution of superconducting properties. The practical implications of these results are presented and discussed.


2016 ◽  
Vol 848 ◽  
pp. 657-663 ◽  
Author(s):  
Sheng Nan Zhang ◽  
Xiao Bo Ma ◽  
Ji Xing Liu ◽  
Jian Qing Feng ◽  
Cheng Shan Li ◽  
...  

FeSe superconducting bulks were prepared with high energy ball milling (HEBM) aided sintering process, within which process, tetragonal β-FeSe superconducting phase could be formed directly with one step sintering process, and the formation of hexagonal δ-FeSe non-superconducting phase was effectively avoided. The influences of HEBM time on the sintering process of FeSe bulks were systematically investigated. With different HEBM time, the phase composition and morphology of precursor powders changed correspondingly, which thus influenced the final phase composition and superconducting properties of FeSe superconducting bulks. Due to the formation of FeSe bulks with larger tetragonal phase content and higher superconducting transition temperature, HEBM time of 6.0 h was recognized as the optimal parameter. Shorter HEBM time could lead to the insufficient decrease of particle size and low density. While longer HEBM time caused the formation of amorphous hexagonal δ-FeSe, which crystallized during sintering process. Thus no more tetragonal FeSe could be obtained. The FeSe superconducting bulk with the critical temperature Tc(onset) of 8.0 K was obtained with the HEBM time of 6 h, and sintering temperature of 700 oC for 12 h.


Author(s):  
Satyajit Ambike ◽  
James P. Schmiedeler ◽  
Michael M. Stanisˇic´

Path tracking can be accomplished by separating the control of the desired trajectory geometry and the control of the path variable. Existing methods accomplish tracking of up to third-order geometric properties of planar paths and up to second-order properties of spatial paths using non-redundant manipulators, but only in special cases. This paper presents a novel methodology that enables the geometric tracking of a desired planar or spatial path to any order with any non-redundant regional manipulator. The governing first-order coordination equation for a spatial path-tracking problem is developed, the repeated differentiation of which generates the coordination equation of the desired order. In contrast to previous work, the equations are developed in a fixed global frame rather than a configuration-dependent canonical frame, providing a significant practical advantage. The equations are shown to be linear, and therefore, computationally efficient. As an example, the results are applied to a spatial 3-revolute mechanism that tracks a spatial path. Spatial, rigid-body guidance is achieved by applying the technique to three points on the end-effector of a six degree-of-freedom robot. A spatial 6-revolute robot is used as an illustration.


2019 ◽  
Vol 97 (2) ◽  
pp. 86-93 ◽  
Author(s):  
Yong Pan ◽  
Weihua Zhu ◽  
Heming Xiao

A new family of azaoxaadamantane cage compounds were firstly designed by introducing the oxygen atom into hexanitrohexaazaoxaadmantane (HNHAA) to replace the N–NO2 group. Their properties including heats of formation (HOFs), detonation properties, strain energies, thermal stability, and sensitivity were extensively studied by using density functional theory. All of the title compounds exhibit surprisingly high density (ρ > 2.01 g/cm3) and excellent detonation properties (detonation velocity (D) > 9.29 km/s and detonation pressure (P) > 40.80 GPa). In particular, B (4,8,9,10-tetraazadioxaadamantane) and C (6,8,9,10-tetraazadioxaadamantane) have a remarkably high D and P values (9.70 km/s and 44.45 GPa, respectively), which are higher than that of HNHAA or CL-20. All of the title compound have higher thermal stability and lower sensitivity (h50 > 19.58 cm) compared with the parent compound HNHAA. Three triazatrioxaadamantane cage compounds, D (6,8,9-triazatrioxaadamantane), E (6,8,10-triazatrioxaadamantane), and F (8,9,10-triazatrioxaadamantane), are expected to be relatively insensitive explosives. All of the title compounds exhibit a combination of high denotation properties, good thermal stability, and low insensitivity.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Jerome Andonissamy ◽  
S. K. Singh ◽  
S. K. Agarwal

The present study was conducted to design and analyze the structural model of buffalo pregnancy-associated glycoprotein-1 (PAG-1) using bioinformatics. Structural modeling of the deduced buffalo PAG-1 protein was done using PHYRE, CONSURF servers and its structure was subsequently constructed using MODELLER 9.9 and PyMOL softwares Buffalo PAG-1 structural conformity was analyzed using PROSA, WHATIF, and 3D-PSSM servers. Designed buffalo PAG-1 protein structure on BLAST analysis retrieved protein structures belonging to aspartic proteinase family. Moreover in silico analysis revealed buffalo PAG-1 protein retained bilobed structure with pepstatin-binding clefts near the active sites by docking studies with pepstatin A using PatchDock server. Structural studies revealed that the amino and carboxy terminal containing aspartic residues are highly conserved and buried within the protein structure. Structural conformity studies showed that more than 90% of the residues lie inside favored and allowed regions. It was also deduced that buffalo PAG-1 possesses low and high energy zones with a very low threshold for proteolysis ascertaining the stableness of the buffalo PAG-1 protein structure. This study depicts the structural conformity and stability of buffalo PAG-1 protein.


Sign in / Sign up

Export Citation Format

Share Document