Magnetron Sputtered Intermetallic Al2Au and Al-Zr-Y Coatings for the Oxidation Protection of γ-TiAl

2006 ◽  
Vol 980 ◽  
Author(s):  
Martin Moser ◽  
Paul Heinz Mayrhofer ◽  
Reinhold Braun

AbstractAl-based intermetallic coatings are widely used as bond coats and for oxidation protection of turbine blades and engine components. Here we present and discuss the structural and thermal properties of novel unbalanced-magnetron sputtered Al-based coatings (single-phase intermetallic Al2Au, binary Al-Zr, and nano-structured Al-Zr-Y) developed to protect gamma-TiAl from environmental attack at elevated temperatures. Al-Zr films exhibit a coarse-grained dual-phase Al3Zr2-Al2Zr structure and are nano-structured by alloying with ~5, 10, and 14 at% Y.Combined dynamic differential-scanning calorimetry and thermogravimetric analyses up to a temperature of 1150 °C reveal that the Al2Au film is very stable with only marginal mass gain from oxidation found between 800 and 1000 °C. High temperature X-ray diffraction shows that this coating retains its (311) texture up to 900 °C where Al2O3 formation leads to the depletion of Al in Al2Au and subsequently the precipitation of intermetallic AlAu. When gamma-TiAl is coated with Al2Au and exposed to cyclic oxidation tests at 750 and 850 °C good oxidation resistance is obtained as a protective oxide layer is formed.Dual-phase Al3Zr2-Al2Zr coatings form ZrO2 and Al2O3 in oxidizing atmosphere. However, the phase transition from monoclinic (m-)ZrO2 to tetragonal (t-)ZrO2 with the accompanying volume change causes flaking of the oxide. Yttrium addition to the Al-Zr films stabilizes the cubic (c-) and t-ZrO2 and hence avoids the fatal tetragonal-monocline transformation. The thermally grown c-ZrO2 based oxides allow good adhesion to thermal barrier coatings which are themselves based on c-ZrO2.

Author(s):  
Afzana Anwer ◽  
S. Eilidh Bedford ◽  
Richard J. Spontak ◽  
Alan H. Windle

Random copolyesters composed of wholly aromatic monomers such as p-oxybenzoate (B) and 2,6-oxynaphthoate (N) are known to exhibit liquid crystalline characteristics at elevated temperatures and over a broad composition range. Previous studies employing techniques such as X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) have conclusively proven that these thermotropic copolymers can possess a significant crystalline fraction, depending on molecular characteristics and processing history, despite the fact that the copolymer chains possess random intramolecular sequencing. Consequently, the nature of the crystalline structure that develops when these materials are processed in their mesophases and subsequently annealed has recently received considerable attention. A model that has been consistent with all experimental observations involves the Non-Periodic Layer (NPL) crystallite, which occurs when identical monomer sequences enter into register between adjacent chains. The objective of this work is to employ electron microscopy to identify and characterize these crystallites.


Author(s):  
H. Kung ◽  
T. R. Jervis ◽  
J.-P. Hirvonen ◽  
M. Nastasi ◽  
T. E. Mitchell ◽  
...  

MoSi2 is a potential matrix material for high temperature structural composites due to its high melting temperature and good oxidation resistance at elevated temperatures. The two major drawbacksfor structural applications are inadequate high temperature strength and poor low temperature ductility. The search for appropriate composite additions has been the focus of extensive investigations in recent years. The addition of SiC in a nanolayered configuration was shown to exhibit superior oxidation resistance and significant hardness increase through annealing at 500°C. One potential application of MoSi2- SiC multilayers is for high temperature coatings, where structural stability ofthe layering is of major concern. In this study, we have systematically investigated both the evolution of phases and the stability of layers by varying the heat treating conditions.Alternating layers of MoSi2 and SiC were synthesized by DC-magnetron and rf-diode sputtering respectively. Cross-sectional transmission electron microscopy (XTEM) was used to examine three distinct reactions in the specimens when exposed to different annealing conditions: crystallization and phase transformation of MoSi2, crystallization of SiC, and spheroidization of the layer structures.


2020 ◽  
pp. 511-515
Author(s):  
E.N. Eremin ◽  
A.S. Losev ◽  
I.A. Ponomarev ◽  
S.A. Borodikhin

The heat-resistance of coating from deposited steel 15N8G6M3FTB at temperature of 900 °С is studied. It is established that this dependence occurs in the first hours. The average mass gain of the metal scale of such coating at 900 °С is 0.0128 kg/(m2 •h). It is shown that the basis of metal scale of the composition 15N8G6M3FTB is hematite Fe2O3 and magnetite Fe3O4, as well as MnO, which have protective properties. The number of other phase compounds with high protective properties is negligible. The coating from steel 15N8G6M3FTB can be used for applying to the surface of parts operating at elevated temperatures.


1996 ◽  
Vol 33 (5) ◽  
pp. 715-728 ◽  
Author(s):  
R.N. Adair ◽  
R.A. Burwash

The middle Cretaceous Crowsnest Formation west of Coleman, Alberta, is composed of bedded alkaline volcanic deposits containing heterolithic volcanic rock fragments and crystal clasts. Comparison with modern examples of subaerial pyroclastic rocks suggests that pyroclastic flows, surges, fallout of material from vertical eruption columns, and minor mud flows emplaced the deposits. Textural evidence in the form of plastically deformed volcanic fragments, chilled deposit margins, baked rock fragment margins, recrystallization, and the presence of charred wood and charred wood molds indicate emplacement at elevated temperature. Massive deposits containing a fine-grained basal zone are interpreted as the product of pyroclastic flows, whereas deposits characterized by a block-rich base overlain by a thin layer of block-depleted stratified material are interpreted as the product of density-stratified surges. Deposits exhibiting pronounced stratification were emplaced by ash-cloud surges. Thickly bedded breccias exhibiting rheomorphic textures were emplaced as vent-proximal pyroclastic flows. Deposits characterized by parallel beds and graded structures are interpreted as fallout tephra deposits, and deposition by lahars is indicated by coarse-grained beds that lack evidence for emplacement at elevated temperatures. The eruptions of the Crowsnest Formation were cyclical. An initial explosive phase generated deposits by pyroclastic flows, surges, fallout, and lahars. As an eruption progressed, it evolved into a poorly gas-charged effusive stage that emplaced coarsely porphyritic domes, plugs, spines, and vent-proximal lava flows. Subsequent eruptions destroyed the effusive vent facies deposits and produced abundant heterolithic clasts typical of the formation.


2021 ◽  
Vol 36 (2) ◽  
pp. 137-143
Author(s):  
S. A. Awad

Abstract This paper aims to describe the thermal, mechanical, and surface properties of a PVA/HPP blend whereby the film was prepared using a solution casting method. The improvements in thermal and mechanical properties of HPP-based PVA composites were investigated. The characterization of pure PVA and PVA composite films included tensile tests, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results of TGA and DSC indicated that the addition of HPP increased the thermal decomposition temperature of the composites. Mechanical properties are significantly improved in PVA/HPP composites. The thermal stability of the PVA composite increased with the increase of HPP filler content. The tensile strength increased from 15.74 ± 0.72 MPa to 27.54 ± 0.45 MPa and the Young’s modulus increased from 282.51 ± 20.56 MPa to 988.69 ± 42.64 MPa for the 12 wt% HPP doped sample. Dynamic mechanical analysis (DMA) revealed that at elevated temperatures, enhanced mechanical properties because of the presence of HPP was even more noticeable. Morphological observations displayed no signs of agglomeration of HPP fillers even in composites with high HPP loading.


2008 ◽  
Vol 584-586 ◽  
pp. 127-132 ◽  
Author(s):  
Anastasia E. Sergeeva ◽  
Daria Setman ◽  
Michael Zehetbauer ◽  
Sergey Prokoshkin ◽  
Vladimir V. Stolyarov

The aim of this paper is the investigation of electroplastic deformation (EPD) and subsequent annealing influence on martensitic transformation in the shape memory Ni50.7Ti49.3 alloy. Using differential scanning calorimetry method it was shown that EPD at the low strain stimulates structure relaxation and recovers martensitic transformation in cooling, which is usually suppressed by cold rolling.


2014 ◽  
Vol 59 (3) ◽  
pp. 977-980 ◽  
Author(s):  
P. Bała

Abstract In the following work presents results of high carbon alloys from the Ni-Ta-Al-M system are presented. The alloys have been designed to have a good tribological properties at elevated temperatures. Despite availability of numerous hot work tool materials there is still a growing need for new alloys showing unique properties, which could be used under heavy duty conditions, i.e. at high temperatures, in a chemically aggressive environment and under heavy wear conditions. A characteristic, coarse-grained dendritic microstructure occurs in the investigated alloys in the as-cast condition. Primary dendrites with secondary branches can be observed. Tantalum carbides of MC type and graphite precipitations are distributed in interdendritic spaces in the Ni-Ta-Al-C and Ni-Ta-Al-C-Co alloys, while Tantalum carbides of MC type and Chromium carbides of M7C3 type appeared in the Ni-Ta-Al-C-Co-Cr and Ni-Ta-Al-C-Cr alloys. In all alloys g’ phase is present, however, its volume fraction in the Ni-Ta-Al-C and Ni-Ta-Al-C-Co alloys is small.During heating from as-cast state in Ni-Ta-Al-C and Ni-Ta-Al-C-Co alloys, the beginning of the tantalum carbides precipitation process (MC type) followed (or simultaneous) by the intermetallic phase precipitation (g’ – Ni3(AlTa)) was stated, while in Ni-Ta-Al-C-Co-Cr and Ni-Ta-Al-C-Cr alloys, besides Tantalum carbides also the Chromium carbides precipitation occurred. It means that the investigated alloys were partially supersaturated in as-cast state. Above 1050°C in all investigated alloys the g’ phase is dissolving. In addition, the precipitation of secondary carbides during slow cooling was occured.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 862 ◽  
Author(s):  
Jingfeng Liu ◽  
Weifeng Fan ◽  
Gewu Lu ◽  
Defeng Zhou ◽  
Zhen Wang ◽  
...  

Thermoplastic polyimide (TPI) was synthesized via a traditional one-step method using 2,3,3′,4′-biphenyltetracarboxylic dianhydride (3,4′-BPDA), 4,4′-oxydianiline (4,4′-ODA), and 2,2′-bis(trifluoromethyl)benzidine (TFMB) as the monomers. A series of semi-interpenetrating polymer networks (semi-IPNs) were produced by dissolving TPI in bisphenol A dicyanate (BADCy), followed by curing at elevated temperatures. The curing reactions of BADCy were accelerated by TPI in the blends, reflected by lower curing temperatures and shorter gelation time determined by differential scanning calorimetry (DSC) and rheological measurements. As evidenced by scanning electron microscopy (SEM) images, phase separation occurred and continuous TPI phases were formed in semi-IPNs with a TPI content of 15% and 20%. The properties of semi-IPNs were systematically investigated according to their glass transition temperatures (Tg), thermo-oxidative stability, and dielectric and mechanical properties. The results revealed that these semi-IPNs possessed improved mechanical and dielectric properties compared with pure polycyanurate. Notably, the impact strength of semi-IPNs was 47%–320% greater than that of polycyanurate. Meanwhile, semi-IPNs maintained comparable or even slightly higher thermal resistance in comparison with polycyanurate. The favorable processability and material properties make TPI/BADCy blends promising matrix resins for high-performance composites and adhesives.


Sign in / Sign up

Export Citation Format

Share Document