scholarly journals MBE Growth of Nitride-Arsenide Materials for long Wavelength Opto-electronics

2000 ◽  
Vol 5 (S1) ◽  
pp. 474-480 ◽  
Author(s):  
Sylvia G. Spruytte ◽  
Christopher W. Coldren ◽  
Ann F. Marshall ◽  
Michael C. Larson ◽  
James S. Harris

Nitride-Arsenide materials were grown by molecular beam epitaxy (MBE) using a radio frequency (rf) nitrogen plasma. The plasma conditions that maximize the amount of atomic nitrogen versus molecular nitrogen were determined using the emission spectrum of the plasma. Under constant plasma source conditions and varying group III flux, the nitrogen concentration in the film is inversely proportional to the group III flux (i. e. the nitrogen sticking coefficient is unity). The relationship between nitrogen concentration in the film and lattice parameter of the film is not linear for nitrogen concentrations above 2.9 mole % GaN, indicating that some nitrogen is incorporated on other locations than the group V lattice sites. For films with these higher nitrogen concentrations, XPS indicates that the nitrogen exists in two configurations: a Gallium-Nitrogen bond and another type of nitrogen complex in which nitrogen is less strongly bonded to Gallium atoms. Annealing removes this nitrogen complex and allows some of the nitrogen to diffuse out of the film. Annealing also improves the crystal quality of GaAsN quantum wells.

1996 ◽  
Vol 449 ◽  
Author(s):  
I. H. Ho ◽  
G.B. Stringfellow

ABSTRACTA model based on the valence-force-field (VFF) model has been developed specifically for the calculation of the irascibility gaps in III-V nitride alloys. In the dilute limit, this model allows the relaxation of the atoms on both sublattices. It was found that the energy due to bond stretching and bond bending was lowered and the solubility limit was increased substantially when both sublattices were allowed to relax to distances as large as the sixth nearest neighbor positions. Using this model, the equilibrium mole fraction of N in GaP was calculated to be 6×l0−7 at 700°C. This is slightly higher than the calculated results from the semi-empirical delta lattice parameter (DLP) model. Both the temperature dependence and the absolute values of the calculated solubility agree closely with the experimental data. The solubility is more than three orders of magnitude larger than the result obtained using the VFF model with the group V atom positions given by the virtual crystal approximation, i.e., with relaxation of only the first neighbor bonds. Other nitride systems, such as GaAsN, AlPN, AlAsN, InPN, and InAsN were investigated as well. The equilibrium mole fractions of nitrogen in InP and InAs are the highest, which agrees well with recent experimental data where high N concentrations have been produced in InAsN alloys. Calculations were also performed for the alloy systems with mixing on the group III sublattice that are so important for device applications. Allowing relaxation to the 3rd nearest neighbor gives an In solubility in GaN at 800°C of less than 6%. Again, this is in agreement with the results of the DLP model calculation. This result may partially explain the difficulties experienced with the growth of these alloys. Indeed, evidence of solid immiscibility has recently been reported. A significant miscibility gap was also calculated for the AlInN system, but the AlGaN system is completely miscible.


1996 ◽  
Vol 423 ◽  
Author(s):  
Y. C. Kao ◽  
T. P. E. Broekaert ◽  
H. Y. Liu ◽  
S. Tang ◽  
I. H. Ho ◽  
...  

AbstractIn this paper, we report the MBE growth of high nitrogen content lattice-matched InAs1−xNx (x=0.38) single crystal epitaxial films on GaAs. The nitrogen incorporation is about an order higher than previously reported on other mixed group V nitride alloys. These data are consistent with a nitrogen solubility limit calculation in various III-V binary alloys, which predicts orders of magnitude higher nitrogen incorporation in InAs than any other alloys. InAsN growths were obtained using a modified ECR-MBE system with atomic-nitrogen generated by an ECR plasma source. Improved crystal quality was obtained using a “template” growth technique. An x-ray linewidth of 270 arc-s was achieved on a 0.4 μm thick InAs0.62N0.38/GaAs multi-layer structure. Hall effect data show these InAsN films are semi-metallic.


1996 ◽  
Vol 450 ◽  
Author(s):  
Joseph Micallef ◽  
James L. Borg ◽  
Wai-Chee Shiu

ABSTRACTTheoretical results are presented showing how quantum well disordering affects the TE and TM absorption coefficient spectra of In0.53Ga0.47As/InP single quantum wells. An error function distribution is used to model the constituent atom composition after interdiffusion. Different interdiffusion rates on the group V and group III sublattices are considered resulting in a strained structure. With a suitable interdiffusion process the heavy hole and light hole ground state, excitonic transition energies merge and the absorption coefficient spectra near the fundamental absorption edge become polarization insensitive. The results also show that this polarization insensitivity can persist with the application of an electric field, which is of considerable interest in waveguide modulators.


2001 ◽  
Vol 692 ◽  
Author(s):  
Victor M. Ustinov ◽  
Nikolai A. Cherkashin ◽  
Nikolai A. Bert ◽  
Andrei F. Tsatsul'nikov ◽  
Alexei R. Kovsh ◽  
...  

Abstract(In)GaAsN based heterostructures have been found to be promising candidates for the active region of 1.3 micron VCSELs. However, (In)GaAsN bulk layers and quantum wells usually demonstrate lower photoluminescence intensity than their nitrogen-free analogues. Defects associated with lower temperature growth and N-related defects due to plasma cell operation and possible nonuniform distribution of nitrogen enhance the non-radiative recombination in N-contained layers. We studied the photoluminescence intensity of GaAsN layers as a function of N content in MBE grown samples using rf-plasma source. Increasing the growth temperature to as high as 520 °C in combination with the increase in the growth rate allowed us to avoid any N-related defects up to 1.5% of nitrogen. Low-temperature-growth defects can be removed by post-growth annealing. We achieved the same radiative efficiency of GaAsN samples grown at 520°C with that of reference layer of GaAs grown at 600°C. Compositional fluctuations in GaAsN layers lead to characteristic S-shape of temperature dependence of photoluminescence peak position and this feature is the more pronounced the higher the amount of nitrogen in GaAsN. Annealing reduces compositional fluctuations in addition to the increase in the photoluminescence intensity. The results obtained are important for further improving the characteristics of InGaAsN lasers emitting at 1.3 micron.


2006 ◽  
Vol 21 (6) ◽  
pp. 829-832 ◽  
Author(s):  
P L Gareso ◽  
M Buda ◽  
H H Tan ◽  
C Jagadish ◽  
S Ilyas ◽  
...  
Keyword(s):  
Group V ◽  

2004 ◽  
Vol 811 ◽  
Author(s):  
Hood Chatham ◽  
Yoshi Senzaki ◽  
Jeff Bailey ◽  
Wesley Nieveen

ABSTRACTWe discuss the nitridation of ALD-deposited hafnium silicate films by exposure to atomic nitrogen generated in a remote nitrogen plasma. Nitrogen concentration [N] as measured by X-ray photoelectron spectroscopy (XPS) is determined as a function of the nitridation temperature and other process conditions. Nitrogen concentrations up to 13.7 atomic % were achieved.


1992 ◽  
Vol 263 ◽  
Author(s):  
Rouel Fernandez

ABSTRACTReflection High Energy Electron Diffraction (RHEED) oscillations under arsenic and gallium-controlled Molecular Beam Epitaxy (MBE) growth conditions have been used to measure the sticking and desorption coefficients of As2 and As4. The coefficients are obtained from measurements of the arsenic incorporation rates. Comparisons are made with measurements obtained from desorption rates using modulated beam mass spectroscopy. The transition from gallium to arsenic-controlled growth is observed to occur after excess gallium atoms accumulate on the surface. The maximum intrinsic arsenic sticking coefficients occur when the maximum number of gallium atoms can be incorporated for a given arsenic flux. The intrinsic maximum arsenic sticking coefficients are found to be 0.75 and 0.50 for As2 and As4, respectively. During galliumcontrolled growth, the arsenic sticking coefficients are independent of substrate temperature as long as the sticking coefficient of gallium is equal to one. However, a temperature dependent maximum gallium-controlled arsenic sticking coefficient exists. It can be measured by the maximum Ga to As4 flux ratio that produces specular film surfaces. During gallium-controlled growth, the Ga to As flux ratios are shown to be equal to the gallium-controlled arsenic sticking coefficients. The activation energy for arsenic desorption during arsenic-controlled growth conditions was measured as -0.50 eV for independent As4 and As2 incident fluxes. During gallium-controlled growth with incident As4 fluxes, an activation energy for arsenic desorption of -0.70 eV was measured for the maximum gallium-controlled arsenic sticking coefficients.


Sign in / Sign up

Export Citation Format

Share Document