Oxidative stress as an important pathogenetic mechanism of changes in the reproductive health of women with somatoform diseases and violation of autonomic homeostasis

2017 ◽  
pp. 23-27
Author(s):  
Vl.V. Podolskyi ◽  
◽  
V.V. Podolskyi ◽  
V.K. Tishchenko ◽  
S.K. Strizhak ◽  
...  

The objective: to investigate the status of phospholipids and neutral lipids of blood cells in fertile aged women with violation of autonomic homeostasis and changes in reproductive health. Patients and methods. We examined 360 women with violation of autonomic homeostasis in the form of autonomic dysfunction syndrome and somatofom dysfunction of the autonomic nervous system of hypertonic, hypotonic and cardiac type and changes in reproductive health such as: artificial abortions, infertility and uterine leiomyoma. Results. The article presents data from a study of lipid peroxidation of cell membranes in fertile aged women with violation of autonomic homeostasis and changes in reproductive health. The obtained data of decay products concentrations of phospholipids and neutral lipids of cellular membranes indicate the ravages of free radical compounds to form intermediates and final products of lipid peroxidation. The results confirm the role of oxidative stress as an important pathogenetic mechanism of changes in the reproductive health of women with somatoform disorders and violations of autonomic homeostasis. Conclusion. Changes in the concentration of phospholipids, neutral lipids and lipid peroxidation products indicate a destabilizing effect on cell membranes in women with violation of autonomic homeostasis and reproductive health changes. Increasing the number of phospholipid degradation products show a decrease in the liquid component of cell membranes, which in turn changes the nature receptor interaction, as evidenced by a study hormonal and leads to disruption of feedback mechanisms concentration of hormones in the blood. Key words: oxidative stress, lipid peroxidation, women of fertile age, violations of autonomic homeostasis, changes in reproductive health.

Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1185
Author(s):  
Nadia Gruber ◽  
Liliana Orelli ◽  
Cristina Minnelli ◽  
Luca Mangano ◽  
Emiliano Laudadio ◽  
...  

The potential of nitrones (N-oxides) as therapeutic antioxidants is due to their ability to counteract oxidative stress, mainly attributed to their action as radical scavengers toward C- and O-centered radicals. Among them, nitrones from the amidinoquinoxaline series resulted in interesting derivatives, due to the ease with which it is possible to introduce proper substituents within their structure in order to modulate their lipophilicity. The goal is to obtain lipophilic antioxidants that are able to interact with cell membranes and, at the same time, enough hydrophilic to neutralize those radicals present in a water compartment. In this work, the antioxidant efficacy of a series of amidinoquinoxaline nitrones has been evaluated regarding the oxidation of 2-deoxyribose and lipid peroxidation. The results have been rationalized on the basis of the different possible mechanisms involved, depending on some of their properties, such as lipophilicity, the ability to scavenge free radicals, and to undergo single electron transfer (SET) reactions.


2019 ◽  
Vol 20 (11) ◽  
pp. 2709 ◽  
Author(s):  
Lucija Mandić ◽  
Anja Sadžak ◽  
Vida Strasser ◽  
Goran Baranović ◽  
Darija Domazet Jurašin ◽  
...  

Flavonoids, polyphenols with anti-oxidative activity have high potential as novel therapeutics for neurodegenerative disease, but their applicability is rendered by their poor water solubility and chemical instability under physiological conditions. In this study, this is overcome by delivering flavonoids to model cell membranes (unsaturated DOPC) using prepared and characterized biodegradable mesoporous silica nanoparticles, MSNs. Quercetin, myricetin and myricitrin have been investigated in order to determine the relationship between flavonoid structure and protective activity towards oxidative stress, i.e., lipid peroxidation induced by the addition of hydrogen peroxide and/or Cu2+ ions. Among investigated flavonoids, quercetin showed the most enhanced and prolonged protective anti-oxidative activity. The nanomechanical (Young modulus) measurement of the MSNs treated DOPC membranes during lipid peroxidation confirmed attenuated membrane damage. By applying a combination of experimental techniques (atomic force microscopy—AFM, force spectroscopy, electrophoretic light scattering—ES and dynamic light scattering—DLS), this work generated detailed knowledge about the effects of flavonoid loaded MSNs on the elasticity of model membranes, especially under oxidative stress conditions. Results from this study will pave the way towards the development of innovative and improved markers for oxidative stress-associated neurological disorders. In addition, the obtained could be extended to designing effective delivery systems of other high potential bioactive molecules with an aim to improve human health in general.


Author(s):  
Anja Sadžak ◽  
Lucija Mandić ◽  
Vida Strasser ◽  
Goran Baranović ◽  
Darija Domazet Jurašin ◽  
...  

Flavonoids, polyphenols with anti-oxidative activity have high potential as novel therapeutics for neurodegenerative disease, but their applicability is rendered by their poor water solubility and chemical instability under physiological conditions. In this study, this is overcome by delivering flavonoids to model cell membranes (unsaturated DOPC) using prepared and characterized biodegradable mesoporous silica nanoparticles, MSNs. Quercetin, myricetin and myricitrin have been investigated in order to determine the relationship between flavonoid structure and protective activity towards oxidative stress i.e. lipid peroxidation induced by addition of hydrogen peroxide and/or Cu2+ ions. Among investigated flavonoids, quercetin showed the most enhanced and prolonged protective anti-oxidative activity. The nanomechanical (Young modulus) measurement of the MSNs treated DOPC membranes during lipid peroxidation confirmed attenuated membrane damage. By applying combination of experimental techniques (AFM, force spectroscopy, ELS, DLS), this work generated detailed knowledge about the effects of flavonoid loaded MSNs on the elasticity of model membranes, especially under oxidative stress conditions. Results from this study will pave the way towards the development of innovative and improved markers for oxidative stress-associated neurological disorders. In addition, the obtained could be extended to designing effective delivery systems of other high potential bioactive molecules with an aim to improve human health in general.


Reproduction ◽  
2000 ◽  
pp. 143-149 ◽  
Author(s):  
RM Sainz ◽  
RJ Reiter ◽  
JC Mayo ◽  
J Cabrera ◽  
DX Tan ◽  
...  

Pregnancy is a physiological state accompanied by a high energy demand of many bodily functions and an increased oxygen requirement. Because of the increased intake and utilization of oxygen, increased levels of oxidative stress would be expected. In the present study, the degree of lipid peroxidation was examined in different tissues from non-pregnant and pregnant rats after the delivery of their young. Melatonin and other indole metabolites are known to be direct free radical scavengers and indirect antioxidants. Thus the effect of pinealectomy at 1 month before pregnancy on the accumulation of lipid damage was investigated in non-pregnant and pregnant rats after the delivery of their young. Malonaldehyde and 4-hydroxyalkenal concentrations were measured in the lung, uterus, liver, brain, kidney, thymus and spleen from intact and pinealectomized pregnant rats soon after birth of their young and at 14 and 21 days after delivery. The same parameters were also evaluated in intact and pinealectomized non-pregnant rats. Shortly after delivery, lipid oxidative damage was increased in lung, uterus, brain, kidney and thymus of the mothers. No differences were detected in liver and spleen. Pinealectomy enhanced this effect in the uterus and lung. It is concluded that during pregnancy high levels of oxidative stress induce an increase in oxidative damage to lipids, which in some cases is inhibited by the antioxidative actions of pineal indoles.


2016 ◽  
pp. 98-101
Author(s):  
Vl.V. Podolsky ◽  
◽  
V.V. Podolsky ◽  

The objective: the developing of a system of preventive measures and principles of pregravid preparation for women with somatoform disorders and violation of autonomic homeostasis (VAH), in which observed changes in reproductive health (CRH) in the shape of states after undergoing artificial abortion, infertility and uterine fibroids. Patients and methods. Conducted clinical and epidemiological studies in the population of women of fertile age (WFA) allowed identifying for further examination of women with CRH in the form of state after undergoing artificial abortion, infertility and uterine fibroids in women with VAH. Further women were examined, in particular the conducted clinical and instrumental methods of research; determined the state of autonomic homeostasis and psycho emotional health of the biotopes of the organism, immunity; analyzed the hormonal regulation of the menstrual cycle; performed genetic studies and determined the morphofunctional state of reproductive system. Results. The most frequent complications during pregnancy in women who had CRH in history in the form of abortions, infertility and uterine fibroids and in the background of the PAF, there was a threat of interruption of pregnancy (often in I and II trimester – 56%) and preterm delivery (21%). The study of the catamnesis of further reproductive health found that in the case of well-conducted therapeutic measures in women undergoing artificial abortion, had infertility and uterine leiomyoma in the background of VAH, restore reproductive function, and in 82% of cases occurred a pregnancy. Conclusion. The the provided study of reproductive health, and state of various organs and systems of fertile aged women with somatoform disorders and violations of the autonomic homeostasis allowed to develop preventive measures for these women and pregravid preparation with the inclusion to the therapy Magnesium and vitamins (Magne-В6®). Key words: somatoform disorders, violation of autonomic homeostasis, changes in reproductive health, prevention and treatment, women of fertile age, Magne-В6®.


2011 ◽  
Vol 14 (3) ◽  
pp. 443-448 ◽  
Author(s):  
N. Kurhalyuk ◽  
H. Tkachenko ◽  
K. Pałczyńska

Resistance of erythrocytes from Brown trout (Salmo trutta m. trutta L.) affected by ulcerative dermal necrosis syndrome In the present work we evaluated the effect of ulcerative dermal necrosis (UDN) syndrome on resistance of erythrocytes to haemolytic agents and lipid peroxidation level in the blood from brown trout (Salmo trutta m. trutta L.). Results showed that lipid peroxidation increased in erythrocytes, as evidenced by high thiobarbituric acid reactive substance (TBARS) levels. Compared to control group, the resistance of erythrocytes to haemolytic agents was significantly lower in UDN-positive fish. Besides, UDN increased the percent of hemolysated erythrocytes subjected to the hydrochloric acid, urea and hydrogen peroxide. Results showed that UDN led to an oxidative stress in erythrocytes able to induce enhanced lipid peroxidation level, as suggested by TBARS level and decrease of erythrocytes resistance to haemolytic agents.


2018 ◽  
Vol 46 (1) ◽  
Author(s):  
Nermin Isik ◽  
Ozlem Derinbay Ekici ◽  
Ceylan Ilhan ◽  
Devran Coskun

 Background: Theileriosis is a tick-borne disease caused by Theileria strains of the protozoan species. Buparvaquone is the mostly preferred drug in the treatment theileriosis, while it is safety in sheep, has not been detailed investigated. It has been hypothesized that buparvaquone may show side effects and these effects may be defined some parameters measured from blood in sheep when it is used at the recommended dose and duration. The aim of this research was to determine the effect of buparvaquone on the blood oxidative status, cardiac, hepatic and renal damage and bone marrow function markers.Materials, Methods & Results: In this study, ten adult (> 2 years) Akkaraman rams were used. Healthy rams were placed in paddocks, provided water ad libitum, and fed with appropriate rations during the experiment. Buparvaquone was ad­ministered at the dose of 2.5 mg/kg (IM) intramuscularly twice at 3-day intervals. Blood samples were obtained before (0. h, Control) and after drug administration at 0.25, 0.5, 1, 2, 3, 4 and 5 days. The blood samples were transferred to gel tubes, and the sera were removed (2000 g, 15 min). During the study, the heart rate, respiratory rate, and body temperature were measured at each sampling time. In addition, the animals were clinically observed. Plasma oxidative status mark­ers (Malondialdehyde, total antioxidant status, catalase, glutathione peroxidase, superoxide dismutase), serum cardiac (Troponin I, creatine kinase-MBmass, lactate dehydrogenase), hepatic (Alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, gamma glutamyltransferase, total protein, albumin, globulin) and renal (Creatinine, blood urea nitrogen) damage markers and hemogram values (white blood cell, red blood cell, platelet, hemogram, hematocrit) were measured. Buparvaquone caused statistically significantly (P < 0.05) increases in the troponin I and blood urea nitrogen levels and fluctuations in alkaline phosphatase activity, but there was no any statistically significance difference determined in the other parameters.Discussion: In this study, buparvaquone was administered two times at a dose of 2.5 mg/kg (IM) at 3-day intervals. Al­though the result was not statistically significant (P > 0.05), it was determined that buparvaquone gradually increased the levels of the main oxidative stress marker, MDA, by approximately 2.8 fold. CAT and GPX levels were also found to have decreased by 2.2 fold. Buparvaquone may cause lipid peroxidation by producing free radicals. Some other antiprotozoal drugs may affect the oxidative status and may increase MDA level and decrease SOD level. In this study, MDA, which is an indicator of lipid peroxidation in vivo, was used to partially detect developing lipid peroxidation. Changes in the levels of reduced GPX and CAT enzymes could be attributed to their use in mediating the hydrogen peroxide detoxification mechanisms. The absence of significant changes in the TAS levels in this study suggests that buparvaquone may partially induce oxidative stress by producing hydrogen peroxide, but no significant changes occurred in the oxidative stress level because of the high antioxidant capacity of sheep. In this study, buparvaquone caused a statistically significant increase (P < 0.05) in the level of Tn-I, which is a marker of specific cardiac damage (P < 0.05), whereas there was no statistically (P > 0.05) significant increase in CK-MBmass. Tn-I and CK-MB levels, which are used to define heart damage in humans, have been successfully used to determine heart damage in sheep. In this research study, the statistically significant increases in Tn-I but not CK-MBmass levels could be considered indicative of mild cardiac damage.Keywords: ram, buparvaquone, safety.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Christina D’Agrosa ◽  
Charles L. Cai ◽  
Faisal Siddiqui ◽  
Karen Deslouches ◽  
Stephen Wadowski ◽  
...  

Abstract Background Neonatal intermittent hypoxia (IH) results in oxidative distress in preterm infants with immature antioxidant systems, contributing to lung injury. Coenzyme Q10 (CoQ10) and fish oil protect against oxidative injury. We tested the hypothesis that CoQ10 is more effective than fish oil for prevention of IH-induced lung injury in neonatal rats. Methods Newborn rats were exposed to two clinically relevant IH paradigms at birth (P0): (1) 50% O2 with brief hypoxia (12% O2); or (2) room air (RA) with brief hypoxia (12% O2), until P14 during which they were supplemented with daily oral CoQ10, fish oil, or olive oil from P0 to P14. Pups were studied at P14 or placed in RA until P21 with no further treatment. Lungs were assessed for histopathology and morphometry; biomarkers of oxidative stress and lipid peroxidation; and antioxidants. Results Of the two neonatal IH paradigms 21%/12% O2 IH resulted in the most severe outcomes, evidenced by histopathology and morphometry. CoQ10 was effective for preserving lung architecture and reduction of IH-induced oxidative stress biomarkers. In contrast, fish oil resulted in significant adverse outcomes including oversimplified alveoli, hemorrhage, reduced secondary crest formation and thickened septae. This was associated with elevated oxidants and antioxidants activities. Conclusions Data suggest that higher FiO2 may be needed between IH episodes to curtail the damaging effects of IH, and to provide the lungs with necessary respite. The negative outcomes with fish oil supplementation suggest oxidative stress-induced lipid peroxidation.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 45
Author(s):  
Helena Beatriz Ferreira ◽  
Tânia Melo ◽  
Artur Paiva ◽  
Maria do Rosário Domingues

Rheumatoid arthritis (RA) is a highly debilitating chronic inflammatory autoimmune disease most prevalent in women. The true etiology of this disease is complex, multifactorial, and is yet to be completely elucidated. However, oxidative stress and lipid peroxidation are associated with the development and pathogenesis of RA. In this case, oxidative damage biomarkers have been found to be significantly higher in RA patients, associated with the oxidation of biomolecules and the stimulation of inflammatory responses. Lipid peroxidation is one of the major consequences of oxidative stress, with the formation of deleterious lipid hydroperoxides and electrophilic reactive lipid species. Additionally, changes in the lipoprotein profile seem to be common in RA, contributing to cardiovascular diseases and a chronic inflammatory environment. Nevertheless, changes in the lipid profile at a molecular level in RA are still poorly understood. Therefore, the goal of this review was to gather all the information regarding lipid alterations in RA analyzed by mass spectrometry. Studies on the variation of lipid profile in RA using lipidomics showed that fatty acid and phospholipid metabolisms, especially in phosphatidylcholine and phosphatidylethanolamine, are affected in this disease. These promising results could lead to the discovery of new diagnostic lipid biomarkers for early diagnosis of RA and targets for personalized medicine.


Sign in / Sign up

Export Citation Format

Share Document