scholarly journals Analysis of DSC (differential scanning calorimetry) thermograms of milk fat

2021 ◽  
Vol 5 (3(61)) ◽  
pp. 36-39
Author(s):  
Maltam Shamilova ◽  
Sevinj Hajiyeva

The object of current research is the oxidation and melting properties of milk fat samples in different heating rates. One of the most problematic issues is the evaluation dependence of temperature and oxidation time regarding to heat flow, and the estimation of attitude of enthalpy values to heating rates. In order to gain a comprehensive assessment of oxidation and melting properties of milk fat samples on differential scanning calorimeter in various heating rates, it is necessary to conduct experimental studies. The analysis was performed using the dynamic option of the differential scanning calorimetry (DSC) with the following sample heating rates: 2.5, 4, 5, 7.5, 10, 12.5, 15 °C⋅min–1. Analyses were performed on 14 samples of milk fat, thus, for each heating rate were intended to two milk fat samples. As a result of the analysis, in the proper heating rates increased, it was found, that the oxidation properties of milk fat depend on the heating rates on DSC examination. In the thermal DSC analysis, the start temperature (Ts) (inlet), the onset temperature (Ton), and the maximum heat flow-peak temperatures (Tp) of oxidation were rising gradually. All the value of oxidation increased gradually with increasing heating rate, only in the Tend values were chainable among all heating rates. However, the oxidation time of milk fat is inversely proportional to the various heating rates in DSC. The oxidation enthalpy was calculated according to the heating rates too. The masses of the samples differ from each other, albeit slightly, which the individuality in the value of enthalpy could be explained through this ratio and duration of exothermic. The melting point considers the important indicator to explain the purity of samples. Melting curves of extracted milk fat samples on DSC were characterized by endothermic behavior and observed with the mild peaks, the first and the second distinct peaks due to the low-melting triacylglycerols (with high unsaturated fatty acids content) and high-melting fats, which present in milk fat. In concluded results, the characteristics of DSC oxidation curves are melting point due to the chemical structure of the fatty acids which milk fat samples contain.

1989 ◽  
Vol 56 (2) ◽  
pp. 265-273 ◽  
Author(s):  
William Banks ◽  
John L. Clapperton ◽  
Anne K. Girdler

SummaryHydrogenated milk fats have been subjected to a process of fractional melting. In five of the six samples, the procedure yielded two fractions, defined as oil/upper solid and lower solid fractions, whilst in the remaining sample, three fractions (oil, upper solid and lower solid) were obtained. The oil and oil/upper solid fractions were rich in short-chain fatty acids (FA) (4:0 and 6:0), whereas the lower solid fractions contained large amounts of long-chain FA (16:0 and 18:0). Triglyceride distributions reflected these differences in FA composition, the oil and oil/upper solid fractions being dominated by triglycerides with carbon numbers (CN) 36–38; the dominant CN for the lower solid fraction was 48–54. Melting spectra, obtained using differential scanning calorimetry, showed that the ability of the fractionation procedure to separate on the basis of melting properties ranged from excellent to relatively poor, depending on the type of milk fat.


2006 ◽  
Vol 116-117 ◽  
pp. 54-57 ◽  
Author(s):  
Jacqueline Lecomte-Beckers ◽  
Ahmed Rassili ◽  
Marc Robelet ◽  
Claude Poncin ◽  
R. Koeune

This paper focuses on the liquid fraction curves of several steels and the correlation between liquid fraction, temperature and heating rate. The work has been performed along two main axes. First, the solid fraction versus temperature has been obtained experimentally by differential scanning calorimetry (DSC), limited to low heating rates. Then, a shift of the liquid fraction curves has been noticed at high industrial heating rates. The quantification of this effect could not be carried out by DSC and required the elaboration of another experimental device.


1974 ◽  
Vol 52 (18) ◽  
pp. 3170-3175 ◽  
Author(s):  
Louis-Philippe Blanchard ◽  
Jean Hesse ◽  
Shadi Lal Malhotra

The influence of molecular weight (900 to 1.8 × 106) on the glass transition temperature of low polydispersity polystyrene (anionically prepared) has been studied by differential scanning calorimetry at heating rates of 5 to 80 °C min−1. Over the range of molecular_weight studied, and at an extrapolated heating rate of 1 °C min−1,[Formula: see text] A thermally prepared polystyrene sample ([Formula: see text]and Pd = 3.2) showed a Tge value of 93 °C, some 10° below the value predicted by the above equation. Low molecular weight species in the highly polydisperse sample are believed to be responsible for the discrepancy. The changes in heat capacity brought about by the glass transitions are accompanied in all cases on heating by an endothermic peak and this regardless of the heating rate (even extrapolated to 1 °C min−1) or the molecular weight of the sample, suggesting that the glass transition phenomenon encountered with polystyrene is a process involving a positive heat effect.


2015 ◽  
Vol 1105 ◽  
pp. 208-214
Author(s):  
S.A. Mohan Krishna ◽  
T.N. Shridhar ◽  
L. Krishnamurthy

Metal matrix composites are regarded to be one of the most predominant classifications in composites. The thermal characterization of metal matrix composites using Differential Scanning Calorimetry is a resourceful technique for the determination of heat flow distribution, specific heat capacity and enthalpy. The measurement of the thermal properties of materials is fundamental for the better understanding of the thermal design. Differential Scanning Calorimeter (DSC) is a technique that measures the difference in the heat flow to a sample and to a reference sample as a direct function of time or temperature under heating, cooling or isothermal conditions. In the present research, evaluation of specific heat capacity and enthalpy are accomplished for Al 6061, Silicon Carbide and Graphite hybrid metal matrix composites from room temperature to 300°C based on heat flow response. Based on endothermic and exothermic processes, the heat flow can be shown clearly depending on heating rate and gradual variation in temperature. The heat flow and heating rate are beneficial in the estimation of specific heat capacity for different percentage compositions of the hybrid composites.


2008 ◽  
Vol 23 (7) ◽  
pp. 1953-1960
Author(s):  
Kai Cai ◽  
Machiko Ode ◽  
Hideyuki Murakami

The combustion synthesis of Al50Ir48Ni2 (at.%) was conducted at different heating rates in both a differential scanning calorimetry (DSC) chamber and a vacuum furnace. It was found that a higher heating rate, a sufficient amount of reactant powder, and effective control of the heat loss facilitated the complete reaction and resulted in combusted single IrAl phase products. Otherwise, multiphase products containing IrAl, unreacted Ir, and Al3Ir were synthesized. The reactions involved in different processes were discussed in terms of the thermal competition between heat generation and loss during the reaction. All ignition temperatures were below 773 K, indicating that the combustion reaction occurs at the solid–solid state. With increasing heating rate, the ignition temperature increased while the product density decreased.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1958
Author(s):  
Jolanta Tomaszewska-Gras ◽  
Mahbuba Islam ◽  
Liliana Grzeca ◽  
Anna Kaczmarek ◽  
Emilia Fornal

The aim of this study was to describe the thermal properties of selected cultivars of flaxseed oil by the use of the differential scanning calorimetry (DSC) technique. The crystallization and melting profiles were analyzed depending on different scanning rates (1, 2, 5 °C/min) as well as oxidative induction time (OIT) isothermally at 120 °C and 140 °C, and oxidation onset temperatures (Ton) at 2 and 5 °C/min were measured. The crystallization was manifested as a single peak, differing for a cooling rate of 1 and 2 °C/min. The melting curves were more complex with differences among the cultivars for a heating rate of 1 and 2 °C/min, while for 5 °C/min, the profiles did not differ, which could be utilized in analytics for profiling in order to assess the authenticity of the flaxseed oil. Moreover, it was observed that flaxseed oil was highly susceptible to thermal oxidation, and its stability decreased with increasing temperature and decreasing heating rate. Significant negative linear correlations were found between unsaturated fatty acid content (C18:2, C18:3 n-3) and DSC parameters (OIT, Ton). Principal component analysis (PCA) also established a strong correlation between total oxidation value (TOTOX), peroxide value (PV) and all DSC parameters of thermo-oxidative stability.


e-Polymers ◽  
2002 ◽  
Vol 2 (1) ◽  
Author(s):  
Andrea Pucci ◽  
Letizia Moretto ◽  
Giacomo Ruggeri ◽  
Francesco Ciardelli

AbstractA new polyethylene-compatible terthiophene chromophore, 5”-thio-(3- butyl)nonyl-2,2’:5’,2”-terthiophene, with melting point lower than 0°C was prepared and used for linear polarizers based on ultra-high-molecular-weight polyethylene (UHMWPE). Differential scanning calorimetry and scanning electron microscopy indicate that the new chromophore is dispersed uniformly in films of UHMWPE obtained by casting from solution. The films show excellent dichroic properties (dichroic ratio 30) at rather low drawing ratio (≈ 20) . Moreover, qualitative agreement is observed with the Ward pseudo-affine deformation scheme.


Sign in / Sign up

Export Citation Format

Share Document