scholarly journals Catalytic Activity of Cr2O3/sepiolite in the oxidation of benzyl alcohol

2018 ◽  
Vol 56 (3) ◽  
pp. 295
Author(s):  
Nguyen Tien Thao ◽  
Nguyen Thi Nhu ◽  
Ngo Thi Thuan

Cr2O3/sepiolite samples with different loadings have been prepared through the precipitation method and characterized by several physical methods such as XRD, TEM, BET, and TGA... The as-prepared materials have large surface area, high distribution of Cr2O3 nanoxides on the nanofibrous sepiolite. The catalysts have been tested in the oxidation of benzyl alcohol with t-BuOOH. Chromium oxides were found to be active sites for the oxidation of benzyl alcohol to aldehyde. The catalytic activity varied with reaction time and temperature. The appropriate temperature is about 60-70oC with conversion of 40-60% and benzaldehyde selectivity of 90%.

RSC Advances ◽  
2016 ◽  
Vol 6 (103) ◽  
pp. 101048-101060 ◽  
Author(s):  
Leisha Xiong ◽  
Rong Chen ◽  
Fengxi Chen

The in situ modification of Fe3O4 by aluminium introduced new active sites besides the primary iron sites. Their synergistic effect contributes to much better catalytic activity of Al-promoted Fe3O4 in the title reaction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoottapong Klinthongchai ◽  
Seeroong Prichanont ◽  
Piyasan Praserthdam ◽  
Bunjerd Jongsomjit

AbstractMesocellular foam carbon (MCF-C) is one the captivating materials for using in gas phase dehydrogenation of ethanol. Extraordinary, enlarge pore size, high surface area, high acidity, and spherical shape with interconnected pore for high diffusion. In contrary, the occurrence of the coke is a majority causes for inhibiting the active sites on catalyst surface. Thus, this study aims to investigate the occurrence of the coke to optimize the higher catalytic activity, and also to avoid the coke formation. The MCF-C was synthesized and investigated using various techniques. MCF-C was spent in gas-phase dehydrogenation of ethanol under mild conditions. The deactivation of catalyst was investigated toward different conditions. Effects of reaction condition including different reaction temperatures of 300, 350, and 400 °C on the deactivation behaviors were determined. The results indicated that the operating temperature at 400 °C significantly retained the lowest change of ethanol conversion, which favored in the higher temperature. After running reaction, the physical properties as pore size, surface area, and pore volume of spent catalysts were decreased owing to the coke formation, which possibly blocked the pore that directly affected to the difficult diffusion of reactant and caused to be lower in catalytic activity. Furthermore, a slight decrease in either acidity or basicity was observed owing to consumption of reactant at surface of catalyst or chemical change on surface caused by coke formation. Therefore, it can remarkably choose the suitable operating temperature to avoid deactivation of catalyst, and then optimize the ethanol conversion or yield of acetaldehyde.


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 641
Author(s):  
Lukasz Wolski ◽  
Grzegorz Nowaczyk ◽  
Stefan Jurga ◽  
Maria Ziolek

The aim of the study was to establish the influence of a co-precipitation agent (i.e., NaOH–immediate precipitation; hexamethylenetetramine/urea–gradual precipitation and growth of nanostructures) on the properties and catalytic activity of as-synthesized Au-CeO2 nanocomposites. All catalysts were fully characterized with the use of XRD, nitrogen physisorption, ICP-OES, SEM, HR-TEM, UV-vis, XPS, and tested in low-temperature oxidation of benzyl alcohol as a model oxidation reaction. The results obtained in this study indicated that the type of co-precipitation agent has a significant impact on the growth of gold species. Immediate co-precipitation of Au-CeO2 nanostructures with the use of NaOH allowed obtainment of considerably smaller and more homogeneous in size gold nanoparticles than those formed by gradual co-precipitation and growth of Au-CeO2 nanostructures in the presence of hexamethylenetetramine or urea. In the catalytic tests, it was established that the key factor promoting high activity in low-temperature oxidation of benzyl alcohol was size of gold nanoparticles. The highest conversion of the alcohol was observed for the catalyst containing the smallest Au particle size (i.e., Au-CeO2 nanocomposite prepared with the use of NaOH as a co-precipitation agent).


2014 ◽  
Vol 3 (1) ◽  
pp. 99-110 ◽  
Author(s):  
Hannes Alex ◽  
Norbert Steinfeldt ◽  
Klaus Jähnisch ◽  
Matthias Bauer ◽  
Sandra Hübner

AbstractNanoparticles (NP) have specific catalytic properties, which are influenced by parameters like their size, shape, or composition. Bimetallic NPs, composed of two metal elements can show an improved catalytic activity compared to the monometallic NPs. We, herein, report on the selective aerobic oxidation of benzyl alcohol catalyzed by unsupported Pd/Au and Pd NPs at atmospheric pressure. NPs of varying compositions were synthesized and characterized by UV/Vis spectroscopy, transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). The NPs were tested in the model reaction regarding their catalytic activity, stability, and recyclability in batch and continuous procedure. Additionally, in situ extended X-ray absorption fine structure (EXAFS) measurements were performed in order to get insight in the process during NP catalysis.


2015 ◽  
Vol 39 (6) ◽  
pp. 4924-4932 ◽  
Author(s):  
Shiwei Xiao ◽  
Chuntao Zhang ◽  
Rong Chen ◽  
Fengxi Chen

The enhancing effect of modification by epichlorohydrin on the catalytic activity of Fe3O4 microspheres in the title reaction was theoretically and experimentally confirmed.


2014 ◽  
Vol 50 (82) ◽  
pp. 12356-12359 ◽  
Author(s):  
Baocang Liu ◽  
Yuefang Niu ◽  
Yan Li ◽  
Fan Yang ◽  
Jiamin Guo ◽  
...  

A novel mesoporous “shell-in-shell” structured nanoreactor (@Pd/meso-TiO2/Pd@meso-SiO2) shows superior catalytic activity, stability, and selectivity for Suzuki–Miyaura coupling reaction.


Recent advancement of two dimensional MXene nanomaterial offers promise in gases and biosensor areas owing to its large surface area, high thermal conductivity, remarkable safety and excellent catalytic activity traits. The current chapter aimed to review the fundamental and technological aspects of MXenes, including myriad synthesis techniques and structural as well as electronic characteristics of these compounds. The features elucidated in the subsequent sections, examined by both theoretical and experimental approaches and potentialities of MXenes in the gas removal and biosensor applications. Several challenges and exciting future opportunities of this research platform are lastly summarized.


1997 ◽  
Vol 15 (6) ◽  
pp. 465-476 ◽  
Author(s):  
G.A. El-Shobaky ◽  
A.M. Ghozza ◽  
G.M. Mohamed

Two samples of Cr2O3/Al2O3 were prepared by mixing a known mass of finely powdered Al(OH)3 with a calculated amount of CrO3 solid followed by drying at 120°C and calcination at 400°C. The amounts of chromium oxide employed were 5.66 and 20 mol% Cr2O3, respectively. The calcined solid specimens were then treated with different doses of γ-rays (20–160 Mrad). The surface and catalytic properties of the different irradiated solids were investigated using nitrogen adsorption at −196°C and the catalysis of CO oxidation by O2 at 300–400°C. The results revealed that γ-rays brought about a slight decrease in the BET surface area, SBET (15%), and in the total pore volume, Vp (20%), of the adsorbent containing 5.66 mol% Cr2O3. The same treatment increased the total pore volume, Vp (36%), and the mean pore radius, r̄ (43%), of the other adsorbent sample without changing its BET surface area. The catalytic activities of both catalyst samples were found to increase as a function of dose, reaching a maximum value at 80–160 Mrad and 40 Mrad for the solids containing 5.66 and 20 mol% Cr2O3, respectively. The maximum increase in the catalytic activity measured at 300°C was 59% and 100% for the first and second catalyst samples, respectively. The induced effect of γ-irradiation on the catalytic activity was an increase in the concentration of catalytically active sites taking part in chemisorption and in the catalysis of CO oxidation by O2 without changing their energetic nature. This was achieved by a progressive removal of surface hydroxy groups during the irradiation process.


Sign in / Sign up

Export Citation Format

Share Document