Phytoremediation of landfill leachate in constructed wetland

2019 ◽  
pp. 441-446
Author(s):  
Jaak Truu ◽  
Jaanis Juhanson ◽  
Mait Kriipsalu ◽  
Marit Seene

The integrated remediation plan of the Laguja landfill, Estonia, includes creation of aconstructed wetland for treatment of landfill leachate. A mesocosm experiment wasconducted in order to estimate the impact of different plant species on purification efficiencyof wetland. The quality of water in mesocosms was monitored during vegetation period. Allplant treatments enhanced reduction of organic matter (BOD: 87-96%, COD: ca 30%, TOC:ca 50%) as well as ammonia and total nitrogen in water compared to unplanted control.Presence of plants enhanced biodegradative bacterial abundance and activity as well asmetabolic diversity of microbial community in water. Water samples from all plant treatmentswere characterized by distinct microbial communities as revealed by molecular fingerprintingtechniques. Most different from the rest of microbial communities were water samples frommesocosm with plants on floating mats. Our results show that in free-water constructedwetlands with vegetation the purification efficiency is not dependent on plant species, whilestructure of water microbial community differs due to plant species.

2019 ◽  
Vol 84 (5) ◽  
pp. 527-530
Author(s):  
Ivana Cipranic ◽  
Radmila Markovic ◽  
Stefan Djordjievski ◽  
Zoran Stevanovic ◽  
Marija Stevanovic

This paper presents the assessment of the impact of coal ash and slag from the ?Maljevac? dump on the quality of water of Paleski Creek, Montenegro. The obtained results confirm the negative influence of surface and groundwater from the dump on the water from the Paleski Creek. The results obtained by testing of the water samples, collected from Paleski Creek upstream of the dump, indicate that the water is qualified to be used for drinking, after simple physical treatment and disinfection. The results obtained for the water samples collected from the Paleski creek downstream from the dump indicate that the water could be safe for drinking only after the treatment that requires an intensive physical, chemical and biological processing, including some extended treatment.


2001 ◽  
Vol 67 (10) ◽  
pp. 4619-4629 ◽  
Author(s):  
Wilfred F. M. Röling ◽  
Boris M. van Breukelen ◽  
Martin Braster ◽  
Bin Lin ◽  
Henk W. van Verseveld

ABSTRACT Knowledge about the relationship between microbial community structure and hydrogeochemistry (e.g., pollution, redox and degradation processes) in landfill leachate-polluted aquifers is required to develop tools for predicting and monitoring natural attenuation. In this study analyses of pollutant and redox chemistry were conducted in parallel with culture-independent profiling of microbial communities present in a well-defined aquifer (Banisveld, The Netherlands). Degradation of organic contaminants occurred under iron-reducing conditions in the plume of pollution, while upstream of the landfill and above the plume denitrification was the dominant redox process. Beneath the plume iron reduction occurred. Numerical comparison of 16S ribosomal DNA (rDNA)-based denaturing gradient gel electrophoresis (DGGE) profiles of Bacteria andArchaea in 29 groundwater samples revealed a clear difference between the microbial community structures inside and outside the contaminant plume. A similar relationship was not evident in sediment samples. DGGE data were supported by sequencing cloned 16S rDNA. Upstream of the landfill members of the β subclass of the class Proteobacteria(β-proteobacteria) dominated. This group was not encountered beneath the landfill, where gram-positive bacteria dominated. Further downstream the contribution of gram-positive bacteria to the clone library decreased, while the contribution of δ-proteobacteria strongly increased and β-proteobacteria reappeared. The β-proteobacteria (Acidovorax,Rhodoferax) differed considerably from those found upstream (Gallionella, Azoarcus). Direct comparisons of cloned 16S rDNA with bands in DGGE profiles revealed that the data from each analysis were comparable. A relationship was observed between the dominant redox processes and the bacteria identified. In the iron-reducing plume members of the familyGeobacteraceae made a strong contribution to the microbial communities. Because the only known aromatic hydrocarbon-degrading, iron-reducing bacteria areGeobacter spp., their occurrence in landfill leachate-contaminated aquifers deserves more detailed consideration.


2020 ◽  
Author(s):  
Oskar Modin ◽  
Raquel Liebana ◽  
Soroush Saheb-Alam ◽  
Britt-Marie Wilén ◽  
Carolina Suarez ◽  
...  

Abstract Background: High-throughput amplicon sequencing of marker genes, such as the 16S rRNA gene in Bacteria and Archaea, provides a wealth of information about the composition of microbial communities. To quantify differences between samples and draw conclusions about factors affecting community assembly, dissimilarity indices are typically used. However, results are subject to several biases and data interpretation can be challenging. The Jaccard and Bray-Curtis indices, which are often used to quantify taxonomic dissimilarity, are not necessarily the most logical choices. Instead, we argue that Hill-based indices, which make it possible to systematically investigate the impact of relative abundance on dissimilarity, should be used for robust analysis of data. In combination with a null model, mechanisms of microbial community assembly can be analyzed. Here, we also introduce a new software, qdiv, which enables rapid calculations of Hill-based dissimilarity indices in combination with null models.Results: Using amplicon sequencing data from two experimental systems, aerobic granular sludge (AGS) reactors and microbial fuel cells (MFC), we show that the choice of dissimilarity index can have considerable impact on results and conclusions. High dissimilarity between replicates because of random sampling effects make incidence-based indices less suited for identifying differences between groups of samples. Determining a consensus table based on count tables generated with different bioinformatic pipelines reduced the number of low-abundant, potentially spurious amplicon sequence variants (ASVs) in the data sets, which led to lower dissimilarity between replicates. Analysis with a combination of Hill-based indices and a null model allowed us to show that different ecological mechanisms acted on different fractions of the microbial communities in the experimental systems.Conclusions: Hill-based indices provide a rational framework for analysis of dissimilarity between microbial community samples. In combination with a null model, the effects of deterministic and stochastic community assembly factors on taxa of different relative abundances can be systematically investigated. Calculations of Hill-based dissimilarity indices in combination with a null model can be done in qdiv, which is freely available as a Python package (https://github.com/omvatten/qdiv). In qdiv, a consensus table can also be determined from several count tables generated with different bioinformatic pipelines.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7332
Author(s):  
Miguel David Marfil-Santana ◽  
Anahí Martínez-Cárdenas ◽  
Analuisa Ruíz-Hernández ◽  
Mario Vidal-Torres ◽  
Norma Angélica Márquez-Velázquez ◽  
...  

Mangrove sediment ecosystems in the coastal areas of the Yucatan peninsula are unique environments, influenced by their karstic origin and connection with the world’s largest underground river. The microbial communities residing in these sediments are influenced by the presence of mangrove roots and the trading chemistry for communication between sediment bacteria and plant roots can be targeted for secondary metabolite research. To explore the secondary metabolite production potential of microbial community members in mangrove sediments at the “El Palmar” natural reserve in Sisal, Yucatan, a combined meta-omics approach was applied. The effects of a cultivation medium reported to select for actinomycetes within mangrove sediments’ microbial communities was also analyzed. The metabolome of the microbial communities was analyzed by high-resolution liquid chromatography-tandem mass spectrometry, and molecular networking analysis was used to investigate if known natural products and their variants were present. Metagenomic results suggest that the sediments from “El Palmar” harbor a stable bacterial community independently of their distance from mangrove tree roots. An unexpected decrease in the observed abundance of actinomycetes present in the communities occurred when an antibiotic-amended medium considered to be actinomycete-selective was applied for a 30-day period. However, the use of this antibiotic-amended medium also enhanced production of secondary metabolites within the microbial community present relative to the water control, suggesting the treatment selected for antibiotic-resistant bacteria capable of producing a higher number of secondary metabolites. Secondary metabolite mining of “El Palmar” microbial community metagenomes identified polyketide synthase and non-ribosomal peptide synthetases’ biosynthetic genes in all analyzed metagenomes. The presence of these genes correlated with the annotation of several secondary metabolites from the Global Natural Product Social Molecular Networking database. These results highlight the biotechnological potential of the microbial communities from “El Palmar”, and show the impact selective media had on the composition of communities of actinobacteria.


2020 ◽  
Vol 8 (6) ◽  
pp. 5097-5101

Industrial pollution and urbanization is a major threat to the water environment.The advent of urbanization and industrialization for economic growth has adversely affected the biological diversity. Lake water quality deterioration has been evident in the lakes surrounding the city of Coimbatore. The growth of industries in the city has led to the increase of population day by day in the city The present study is mainly aimed at studying the nature and impact of water pollution in the sub basins of noyyal river basin in coimbatore-sulur subwatershed which has a major impact on the Environment, Health and Socio-Economic status. To understand the magnitude of the impact, water samples were collected in and around the Coimbatore city namely Sulur lake, Singanallur lake, Valankulam, Ukkadam lake and Noyyal river stream which falls in Coimbatore-Sulur subwatershed and analyzed for physical, chemical and bacterial characteristics. The study showed that the chemical characteristics were relatively higher (TDS-957mg/l), (Cl-439.58mg/l), (NO3 -56.28mg/l) than the Bureau of Indian Standard acceptable limits and the presence of Escherichia Coli(60cfu/100ml) and Total Coliform(400cfu/100ml) are menacing in all the water samples leading to major health impact in human beings and also the quality of water is deteriorated.


2021 ◽  
Author(s):  
Yajie Zhang ◽  
Ye Zhang ◽  
Lecheng Wei ◽  
Mengyan Li ◽  
Weitang Zhu ◽  
...  

Abstract Changxing River, which is a typical inflow river into the Taihu Lake and occurs severe algae invasion, is selected to study the effect of different pollution sources on the water quality and ecological system. Four types of pollution sources, including the estuary of Taihu Lake, discharge outlets of urban wastewater treatment plants, storm water outlets, and non-point source agricultural drainage areas are chosen, and next-generation sequencing and multi-variate statistical analyses are used to characterize the microbial communities and reveal their relationship with water physicochemical properties. Results showed that ammonia nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) are the main pollutant in Changxing River, especially at storm water outlets. At the same time, the diversity of microbial communities was the highest in the summer, and dominant phyla included Proteobacteria (40.9%), Bacteroidetes (21.0%) and Euryarchaeota (6.1%) under the condition of algal bloom. Water temperature (T), air pressure (P), concentrations of TP and CODMn were the important variables for the succession of microbial community. From the perspective of different pollution types, relative abundances of Microcystis and Nostocaceae at the estuary of Taihu Lake were correlated positively with dissolved oxygen (DO) and pH, and Pseudomonas and Arcobacter were correlated positively with concentrations of TN and nitrate nitrogen (NO3--N) at storm water outlets. The results provide a reference for the impact of pollution types on river microbial ecosystem under complex hydrological condition and a guidance for the selection of restoration techniques for polluted rivers entering an important lake.


Diversity ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 525
Author(s):  
Brianna L. Boss ◽  
Bianca R. Charbonneau ◽  
Javier A. Izquierdo

The microbial community composition of coastal dunes can vary across environmental gradients, with the potential to impact erosion and deposition processes. In coastal foredunes, invasive plant species establishment can create and alter environmental gradients, thereby altering microbial communities and other ecogeomorphic processes with implications for storm response and management and conservation efforts. However, the mechanisms of these processes are poorly understood. To understand how changing microbial communities can alter these ecogeomorphic dynamics, one must first understand how soil microbial communities vary as a result of invasion. Towards this goal, bacterial communities were assessed spatially along foredune microhabitats, specifically in barren foredune toe and blowout microhabitats and in surrounding vegetated monocultures of native Ammophila breviligulata and invasive Carex kobomugi. Across dune microhabitats, microbial composition was more dissimilar in barren dune toe and blowout microhabitats than among the two plant species, but it did not appear that it would favor the establishment of one plant species over the other. However, the subtle differences between the microbial community composition of two species could ultimately aid in the success of the invasive species by reducing the proportions of bacterial genera associated exclusively with A. breviligulata. These results suggest that arrival time may be crucial in fostering microbiomes that would further the continued establishment and spread of either plant species.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
V. Serdiuk ◽  
◽  
V. Maksin ◽  

Agriculture, especially livestock, is rated as one of the most polluting industries in the world. In the other hand there is a modern approach to the technology implementation, and is this true that with its usage the impact on the environment is so critical and inevitably leads to environmental catastrophe. It is important to investigate and scientifically substantiate the impact of modern livestock complexes on the environment, especially on groundwater resources objectively,. And only after a number of studies conducted on pig farms with a capacity of 30 and 50 thousand heads per year it would be possible to determine next: is livestock an object of ultra-intensive pollution, or it is an object that does not have a significant negative impact on the environment and is also an economic and food lever of the country. The research was conducted on the example of the company JV LLC "NYVA PEREIASLAVSCHYNY" that is located in two districts of Kyiv region – Brovarskyi and Boryspilskyi. The sanitary protection zone size is 1500 meters to the nearest residential development (MINISTRY OF HEALTH OF UKRAINE, 1996). Projects to reduce the sanitary protection zone have not been developed as there is no need for it. Research of water quality was performed according to State Sanitary Regulations and Rules “Hygienic Requirements to Quality of Water Intended for Human Consumption” “2.2.4-171-10” (State Water Agency of Ukraine, 2010). It was conducted on samples that were taken from 4 artesian wells that are located on the territory of the pig breeding farm № 11. The aim of the research is to identify the impact of the pig breeding farm’s № 11 activity on the underground aquifer and surface water body. To reach this target water samples were collected according to the requirements established in the conclusion on environmental impact assessment from wells in the villages and river. Studies that were conducted during 2020 showed that the quality of water in wells meets the requirements for drinking water. Water samples from wells and ponds showed deviations from the norm up to 10 times. Previous studies did not set a negative impact of the pig breeding farm № 11 on groundwater quality.


Author(s):  
Andrzej Misztal ◽  
Marcin Kuczera

The impact of land use on the water quality of foothill microcatchment areas The impact of land use on the water quality of foothill microcatchment areas. In this paper a comparison is made between the impact of land use methods on the quality of water in the streams which drain various catchment areas. For this purpose three microcatchments were selected which are located in agricultural, rural settlements, and forested areas. Water samples were physically and chemically analysed in order to determine: nitrates, nitrites, ammonia, phosphates, sulphates, chlorides, calcium, magnesium, dissolved oxygen, reaction and conductivity. The above studies were conducted in the 2006 and 2007. Our analysis of the collected materials allows us to affirm that land use methods have a significant impact on the water quality of the streams which drain the area. Rural settlement has the most negative influence on the water quality, followed by typical agricultural use. Based on the direct quality evaluations of single water samples, it has been found that only water from forested areas can be qualified as belonging to the 1st cleanness class.


2018 ◽  
Author(s):  
Alexandria N. Igwe ◽  
Rachel L. Vannette

AbstractRoot-associated microbial communities influence plant phenotype, growth and local abundance, yet the factors that structure these microbial communities are still poorly understood. California landscapes contain serpentine soils, which are nutrient-poor and high in heavy metals, and distinct from neighboring soils. Here, we surveyed the rhizoplane of serpentine-indifferent plants species growing on serpentine and non-serpentine soils to determine the relative influence of plant identity and soil chemistry on rhizoplane microbial community structure using 16S rRNA metabarcoding. Additionally, we experimentally examined if locally adapted microorganisms enhance plant growth in serpentine soil. Plant species, soil chemistry, and the interaction between them were important in structuring rhizoplane bacterial communities in both the field and experimental soils. In the experiment, rhizoplane microbial community source influenced seedling survival, but plant growth phenotypes measured were largely invariant to microbial community with a few exceptions. Results from the field sampling suggest that plant species associate with specific microbial communities even across chemically distinct soils, and that microbial communities can differentially influence seedling survival on harsh serpentine soils.


Sign in / Sign up

Export Citation Format

Share Document