scholarly journals Prevalence and Antimicrobial Susceptibility Profiles of Pathogen Isolated from Bovine Mastitis Milk in Transylvania, Romania

Author(s):  
Cosmina Bouari ◽  
George Nadas ◽  
Flore Chirila ◽  
Sorin Rapuntean ◽  
Cornel Catoi ◽  
...  

 Mastitis in cows, one of the most common and economically important infectious diseases of dairy cattle, all over the world, with significant impact due to economic losses, occurs when the udder becomes inflamed because the leukocytes are released into the mammary gland usually in response to bacteria invasion of the teat canal.The main objective of this study was to evaluate the in vitro antimicrobial susceptibility of bacteria isolated from milk in order to design specific control programs for bovine mastitis in this area.A total of 204 milk samples aseptically collected both from farms and private owners were processed during May 2014 and March 2016 within the Microbiology Laboratory of the Faculty of Veterinary Cluj-Napoca, Romania. The microbiological examination was carried out by inoculation on blood agar and MacConkey medium. After the overnight incubation in aerobic conditions, the identification of the isolates was performed using microscopic, cultural and biochemical methods. Biochemical identification was based on API 20 Biomerieux system. Susceptibility to antibiotics was evaluated using Kirby Bauer disk diffusion method on Mueller-Hinton agar; the antibiotics were represented by Amoxicillin and Clavulanic Acid, Ceftiofur, Florfenicol, Mastidiscs, Enrofloxacin, Penicillin and Tetracycline.Staphylococcus spp. was the most common isolated pathogen, in 54.9% of the specimens, followed by Streptococcus spp. in 20.1%, Escherichia coli in 10.78%, Klebsiella spp. in 8.34%, Bacillus spp. in 5.88%. The most frequent associations were represented by staphylococci-streptococci in 62.7% of the samples, followed by streptococci-bacillus in 19.8% of the samples. The most important etiological agents identified were Staphylococcus aureus, S uberis, Streptococcus agalactiae, and Escherichia coli. Antimicrobial susceptibility test for the total isolates revealed good sensitivity to Enrofloxacin, Mastidiscs and Amoxicillin and Clavulanic Acid. Resistance was observed for Penicillin and Tetracycline.The major mastitis pathogens identified was Staphylococcus aureus, while recurrent mastitis treatment was based on systemic and local administration of Enrofloxacin and Mastidiscs respectively.

Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 812 ◽  
Author(s):  
Albertine Léon ◽  
Sophie Castagnet ◽  
Karine Maillard ◽  
Romain Paillot ◽  
Jean-Christophe Giard

The present study described the evolution of antimicrobial resistance in equine pathogens isolated from 2016 to 2019. A collection of 7806 bacterial isolates were analysed for their in vitro antimicrobial susceptibility using the disk diffusion method. The most frequently isolated pathogens were group C Streptococci (27.0%), Escherichia coli (18.0%), Staphylococcus aureus (6.2%), Pseudomonas aeruginosa (3.4%), Klebsiella pneumoniae (2.3%) and Enterobacter spp. (2.1%). The majority of these pathogens were isolated from the genital tract (45.1%, n = 3522). With the implementation of two French national plans (named ECOANTIBIO 1 and 2) in 2012–2016 and 2017–2021, respectively, and a reduction in animal exposure to veterinary antibiotics, our study showed decreases in the resistance of group C Streptococci, Klebsiella pneumoniae and Escherichia coli against five classes, four classes and one class of antimicrobials tested, respectively. However, Staphylococcus aureus, Escherichia coli and Enterobacter spp. presented an increased resistance against all the tested classes, excepted for two fifths of E. coli. Moreover, the percentages of multi-drug resistant strains of Staphylococcus aureus and Enterobacter spp. also increased from 24.5% to 37.4% and from 26.3% to 51.7%, respectively. The data reported here are relevant to equine practitioners and will help to improve knowledge related to antimicrobial resistance in common equine pathogens.


2020 ◽  
Vol 7 (1) ◽  
pp. 26-32
Author(s):  
Bendella Amina nor elhouda ◽  
Ghazi Kheira ◽  
Meliani Samia

AbstractThe aim of this study is to test two different methods for evaluating the in vitro antibacterial effect of Thymus fontanesii Boiss. et Reut. essential oil against standard and clinical bacterial strains responsible for bovine mastitis: the disc diffusion method or the aromatogram which allows the demonstration of the antibacterial power of essential oils on the bacterial strains tested, Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923 and two strains isolated from bovine mastitis milk S. aureus and E. coli. The inhibition activity of the essential oil of T. fontanesii on bacterial strains by the two methods shows that the antimicrobial power of this oil is very important and is characterized by bactericidal and bacteriostatic action against gram negative and gram positive bacteria. The antimicrobial evaluation by the aromatogram showed good antibacterial activity against all the strains tested, the zones of inhibition of the bacteria were between 23,33±1,527mm and 37,5±3,535 mm. The search for minimum inhibitory concentrations MIC and bactericides CMB made it possible to quantitatively assess the antimicrobial power of this essential oil. In this work, the MIC was 0,625 µl/ml for all strains tested, and the lowest CMB was that of T. fontanesii against E. coli ATCC 25922 was 0,625 µl/ml.


2019 ◽  
Vol 47 (1) ◽  
Author(s):  
Zhe Zhang ◽  
Feng Yang ◽  
Xin-pu Li ◽  
Jin-yin Luo ◽  
Long-hai Liu ◽  
...  

Background: Bovine mastitis, a global disease that is responsible for large economic losses each year due to lower milk yield and reduced milk quality. In some countries, especially in China, Streptococcus agalactiae has become one of the most frequently detected pathogen. Antibiotic treatment and vaccine immunization are important strategies for the control of infectious diseases. The main objective of the present study was to evaluate distribution of bovine mastitis pathogens and antimicrobial resistance of S. agalactiae, and contribute to the treatment of bovine mastitis.Materials, Methods & Results:Clinical mastitis samples (n= 1,122) were collected from 27 dairy farms located in 15 different provinces of China during 2012-2018. Thepathogens were identified by 16S rDNA method. Antimicrobial susceptibility was assessed by disc diffusion method. Molecular characteristics was distinguished based on PCR. The results showed that the main pathogens were Streptococcus agalactiae (n= 324, 26.2%), Escherichia coli (n= 287, 23.2%), and Staphylococcus aureus (n= 131, 10.6%). The serotypes of Streptococcus agalactiae were serotype II (53.6%), Ia (44 %) and VII (1.2%), respectively. Streptococcus agalactiae were resistant to kanamycin (93.8%), gentamicin (49.4%), vancomycin (49.4%), tetracycline (35.8%), clindamycin (34.6%) and erythromycin (32.1%). The main resistance genes were ermA (53.1%) and ermB (85.2%). Resistance to erythromycin was attributed to the genes ermA (P < 0.05) and resistance to tetracycline was attributed to the genes tetK, tetM, tetO (P < 0.01). The virulence genes scpB (81.4%), cyl (100%), glnA (76.6%), cfb (98.8%), hylB (98.8%), scaA (69.1%) were detected in almost all isolates.Discussion: In the present study, Streptococcus agalactiae, Escherichia coli and Staphylococcus aureus were the pathogens isolated most frequently from clinical mastitis. In the case of S. agalactiae, we performed capsular serotyping of isolates. As a result, serotype II (53.6%), Ia (44 %) and VII (1.2%) were detected whichrevealed variation in the distinct geographical areas. We found that serotypes (Ia and II) and β-hemolytic have significant correlation (P < 0.01) in all isolated strains. We made an assumption that either in processes of capsular and haemolytic appearance effected the expression of another. The unclear mechanism remains to be resolved in the future. Penicillin was recommended as a preferred antibiotic for the treatment of both human and bovine S. agalactiae infection. In the present study, resistance to erythromycin and clindamycin were observed in 32% and 34.6% of our strains, respectively. The results indicated that the ermB gene was most frequent among the erythromycin-resistant S. agalactiae. However, we found that the susceptibility to erythromycin and gene ermA have a significant interaction, while susceptibility to erythromycin and gene ermB have a not significant interaction by analyzing the relationship of phenotypic and genotypic resistance. The severity of S. agalactiae infections may be determined by various virulence factors. Surface enzyme ScpB, a C5a peptidase, encode by scpB gene, could promote bacterial invasion of epithelial cells by attenuating recruitment of polymorphonuclear leukocytes to the site of infection. In the present study, the scpB gene was found in 81.4% of all strains. The results suggested the cyl, cfb, hylB and scpB genes may play an important role in the virulence of Streptococcus agalactiae pathogens.


Author(s):  
T. Schmidt

Staphylococcus aureus is 1 of the most important causes of bovine mastitis and is responsible for significant economic losses to the dairy industry worldwide. One of the principal approaches used in treating intramammary infections is the administration of antimicrobials. Due to the propensity of S. aureus to develop resistance, antimicrobial susceptibility monitoring is necessary to ensure that treatment regimens are effective. As part of this investigation, 90 S. aureus strains isolated from mastitis cases submitted to Allerton Provincial Veterinary Laboratory during 2008 and 2009 were evaluated for their susceptibility to a panel of 10 antimicrobials. Only 8 of the 90 S. aureus isolates tested (8.9 %) were found to be susceptible to all of the antimicrobials evaluated. A very high level of resistance to the beta-lactam antibiotics was noted: 47.8 % of the isolates were resistant to penicillin and 65.6 % were resistant to ampicillin. Minimal resistance to oxacillin, cephalothin and trimethoprim-sulfamethoxazole (1.1 %) was found. Seventeen (18.9 %) of the isolates tested were found to be resistant to 3 or more antimicrobials. The need for vigilant monitoring of bacterial resistance trends in the dairy industry is warranted as the potential public health implications are significant.


Antibiotics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 469
Author(s):  
Leta Elias ◽  
Ajay S. Balasubramanyam ◽  
Olena Y. Ayshpur ◽  
Iryna U. Mushtuk ◽  
Nataliya O. Sheremet ◽  
...  

Bovine mastitis is the predominant cause for antimicrobial use on dairy farms and is a major source of economic losses in the dairy industry. In this study, the antimicrobial susceptibility profiles of common mastitis-causing pathogens, Staphylococcus aureus (n = 62), Streptococcus agalactiae (n = 46), and Escherichia coli (n = 129), were determined for dairy cattle with mastitis across 142 Ukrainian farms. The results showed that there were more gentamicin resistant S. aureus isolates (16.95%) identified in this study than previously reported for Ukrainian dairy cattle. Moreover, low levels of amoxicillin susceptibly (13.51%) were observed for St. agalactiae, which contrasted a previous study showing susceptibility levels of >50%. St. agalactiae resistance to tetracycline was observed in 80% of the isolates. Cephalosporin use was most ineffective against E. coli, with 43.27–56% of the isolates exhibiting this resistant trait. Overall, this study performed a preliminary analysis of antimicrobial resistance on mastitis isolates from Ukrainian farms. However, given the limited numbers of the isolates tested in this study and that the publications on antimicrobial resistance in animal husbandry of Ukraine are very few, more extensive investigations are needed to comprehensively examine susceptibility patterns of mastitis-causing pathogens in dairy cattle in Ukraine.


2018 ◽  
Vol 55 (4) ◽  
pp. 390-396 ◽  
Author(s):  
Roger Lafontaine Mesquita TABORDA ◽  
Luiz Antônio da SILVA ◽  
Patricia Puccinelli ORLANDI ◽  
Flávia Serrano BATISTA ◽  
Renata Santos RODRIGUES ◽  
...  

ABSTRACT BACKGROUND: Enteroaggregative Escherichia coli (EAEC) is one of the main acute and chronic diarrhea causes both in children and adults, mainly in developing countries. OBJECTIVE: The aim of the present study is to characterize EAEC strains isolated from faecal samples and to identify genes potentially contributing to virulence, biofilm production and antimicrobial resistance in children admitted to a pediatric hospital in Porto Velho, Rondônia State. METHODS: The total of 1,625 E. coli specimens were isolated from 591 children in the age group 6 years or younger who were hospitalized in Cosme and Damião Children Hospital in Porto Velho, between February 2010 and February 2012, with acute gastroenteritis. Colonies suggestive of E. coli were subjected to polymerase chain reaction testing in order to identify the virulence factors. The in vitro adhesion assays using HEp-2 adherence were tests. Biofilm detection through spectrophotometry and antimicrobial susceptibility tests were conducted in the disk diffusion method. RESULTS: The mentioned study examined 591 stool samples from children with diarrhea. Diarrheogenic E. coli was found in 27.4% (162/591) of the children. EAEC was the diarreagenic E. coli most frequently associated with diarrhea 52.4% (85/162), which was followed by enteropathogenic E. coli 43.8% (71/162), enterotoxigenic E. coli 2.4% (4/162), and enterohemorrhagic E. coli 1.2% (2/162). The aggR gene was detected in 63.5% (54/85) of EAEC isolates; moreover, statistically significant correlation was observed among typical EAEC (aggR) and aatA (P<0.0001), irp2 (P=0.0357) and shf (P=0.0328). It was recorded that 69% (59/85) of the 85 analyzed EAEC strains were biofilm producers; 73% (43/59) of the biofilm producers carried the aggR gene versus 42.3% (11/26) of non-producers (P=0.0135). In addition, there was association between the aatA gene and biofilm production; 61% (36/59) of the samples presented producer strains, versus 19.2% (5/26) of non-producers (P<0.0004). Antibiotic sensitivity test evidenced that most EAEC were ampicillin 70.6% (60/85), sulfamethoxazole 60% (51/85), tetracycline 44.7% (38/85) and cefotaxime 22.4% (19/85) resistant. CONCLUSION: As far as it is known, the present study is pioneer in Northern Brazil to investigate EAEC virulence factors and to show the antimicrobial susceptibility of EAEC strains isolated from children with diarrhea.


2021 ◽  
Vol 9 (2) ◽  
pp. 326
Author(s):  
Frederick Adzitey ◽  
Nurul Huda ◽  
Amir Husni Mohd Shariff

Meat is an important food source that can provide a significant amount of protein for human development. The occurrence of bacteria that are resistant to antimicrobials in meat poses a public health risk. This study evaluated the occurrence and antimicrobial resistance of E. coli (Escherichia coli) isolated from raw meats, ready-to-eat (RTE) meats and their related samples in Ghana. E. coli was isolated using the USA-FDA Bacteriological Analytical Manual and phenotypic antimicrobial susceptibility test was performed by the disk diffusion method. Of the 200 examined meats and their related samples, 38% were positive for E. coli. Notably, E. coli was highest in raw beef (80%) and lowest in RTE pork (0%). The 45 E. coli isolates were resistant ≥ 50% to amoxicillin, trimethoprim and tetracycline. They were susceptible to azithromycin (87.1%), chloramphenicol (81.3%), imipenem (74.8%), gentamicin (72.0%) and ciprofloxacin (69.5%). A relatively high intermediate resistance of 33.0% was observed for ceftriaxone. E. coli from raw meats, RTE meats, hands of meat sellers and working tools showed some differences and similarities in their phenotypic antimicrobial resistance patterns. Half (51.1%) of the E. coli isolates exhibited multidrug resistance. The E. coli isolates showed twenty-two different resistant patterns, with a multiple antibiotic resistance index of 0.0 to 0.7. The resistant pattern amoxicillin (A, n = 6 isolates) and amoxicillin-trimethoprim (A-TM, n = 6 isolates) were the most common. This study documents that raw meats, RTE meats and their related samples in Ghana are potential sources of antimicrobial-resistant E. coli and pose a risk for the transfer of resistant bacteria to the food chain, environment and humans.


2019 ◽  
Vol 6 (1) ◽  
pp. e000369 ◽  
Author(s):  
Magdalena Nüesch-Inderbinen ◽  
Nadine Käppeli ◽  
Marina Morach ◽  
Corinne Eicher ◽  
Sabrina Corti ◽  
...  

BackgroundEscherichia coli is an important aetiological agent of bovine mastitis worldwide.MethodsIn this study, 82 E. coli from bovine mastitis milk samples from 49 farms were analysed for their genetic diversity using phylogenetic grouping and multilocus sequence typing. The isolates were examined by PCR for a selection of virulence factors (VFs). Antimicrobial susceptibility profiles were assessed using the disk diffusion method.ResultsThe most prevalent phylogroups were group B1 (41.5 per cent of the isolates) and group A (30.5 per cent). A variety of 35 different sequence types (STs) were identified, including ST1125 (11 per cent), ST58 (9.8 per cent), ST10 (8.5 per cent) and ST88 (7.3 per cent). Aggregate VF scores (the number of unique VFs detected for each isolate) ranged from 1 to 3 for 63.4 per cent of the isolates and were at least 4 for 12.2 per cent. For 24.4 per cent of the isolates, the score was 0. The three most frequent VFs were traT, fyuA and iutA. The majority (72 per cent) of the isolates harboured traT. The majority (68.3 per cent) of the isolates were fully susceptible to all antimicrobials tested, with 22 per cent resistant to ampicillin and 14.6 per cent to tetracycline. Resistance rates were low for gentamicin (3.7 per cent), amoxicillin/clavulanic acid (2.4 per cent) and ceftiofur (1.2 per cent), respectively.ConclusionAmong the study’s sample population, E. coli strains were genotypically diverse, even in cows from the same farm, although some STs occurred more frequently than others. Susceptibility to clinically relevant compounds remained high.


2012 ◽  
Vol 13 (1) ◽  
pp. 63
Author(s):  
Taswin Yacob ◽  
Rita Endriani

The benefit and efficacy of ketepeng cina (Senna alata) in the treatment of infection has shown that have antibacterialactivity, inhibiting and killing bacteria that cause infection. The objective of this study was evaluate the antibacterialactivity of ketepeng cina against Staphylococcus aureus dan Escherichia coli in vitro. This study was a laboratoryexperimental research which use completely randomized design with diffusion method. Ethanol extract of Sennaalata leaves devided into 4 doses, i.c. 100, 50, 25 and 12.5. Amoxiclave were used as positive control and aquadestnegative control. The data were analyzed by Analysis of Varian continued with Duncan’s Multiple Range Test. Theresult of this study showed that antimicrobial activity of ethanol extract Senna alata leaves inhibited the growth ofStaphylococcus aureus, but not Escherichia coli. The optimum effect was showed given by the concentration 100at 17.7 mm.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Pavithra L. Jayatilake ◽  
Helani Munasinghe

Endophytic and rhizosphere fungi are understood to be aiding the host plant to overcome a range of biotic and abiotic stresses (nutrition depletion, droughts, etc.) hence, they remain to be reservoirs of plethora of natural products with immense use. Consequently, this investigation of endophytic and rhizosphere fungi isolated from Mikania cordata (a perennial vine that is well established in Sri Lanka) for their antimicrobial properties was performed with the aim of future derivation of potential beneficial pharmaceutical products. Leaves, twigs, and roots of M. cordata were utilized to isolate a total of 9 endophytic fungi out of which the highest amount (44%) accounted was from the twigs. A sample of the immediate layer of soil adhering to the root of M. cordata was utilized to isolate 15 rhizosphere fungi. Fusarium equiseti and Phoma medicaginis were endophytes that were identified based on colony and molecular characteristics. The broad spectrum of antimicrobial activity depicted by F. equiseti (MK517551) was found to be significantly greater (p≤0.05, inhibitory against Bacillus cereus ATCC 11778, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 25853) than P. medicaginis (MK517550) (inhibitory against Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 25853) as assessed using the Kirby-Bauer disk diffusion method. Trichoderma virens and Trichoderma asperellum were rhizospere fungi that exhibited remarkable antimicrobial properties against the test pathogens chosen for the study. T. asperellum indicated significantly greater bioactivity against all four bacterial pathogens and Candida albicans ATCC 10231 under study. The ranges of minimum inhibitory concentrations (MICs) of the fungi depicting antimicrobial properties were determined. The results obtained suggest that F. equiseti, P. medicaginis, T. asperellum, and T. virens of M. cordata harness bioprospective values as natural drug candidates. This is the first report on isolation and evaluation of the antimicrobial properties of endophytic and rhizosphere fungi of Mikania cordata.


Sign in / Sign up

Export Citation Format

Share Document