scholarly journals The Use of Antioxidants to Control Root Rot and Wilt Diseases of Pepper

2010 ◽  
Vol 2 (2) ◽  
pp. 46-55
Author(s):  
Montaser Fawzy ABDEL-MONAIM ◽  
Mamdoh Ewis ISMAIL

Ten isolates of Fusarium spp. were isolated from pepper plants collected from different locations in New Valley Governorate, Egypt. Fusarium solani isolate FP2 and F. oxysporum isolate FP4 were highly pathogenic isolates but the other isolates moderate or less pathogenic to pepper plants (cv. 'Anaheim-M'). The four antioxidant compounds (coumaric acid, citric acid, propylgalate and salicylic acid each at 100 and 200 ppm) were evaluated for their in vitro and in vivo agonist to Fusarium pathogenic isolates caused root rot and wilt diseases in pepper plants. All tested antioxidant compounds reduced damping-off, root rot/wilt and area under root rot/wilt progress curve when used as seed soaking, seedling soaking, and soil drench especially at 200 ppm under greenhouse and field conditions compared with untreated plants. All chemicals increased fresh and dry weight of seedling grown in soil drenching or seed treatment with any antioxidants. At the same time, all tested chemicals significantly increase plant growth parameters i.e plant length, plant branching, and total yield per plant in case of seedling soaking or soil drench. In general, propylgalate at 200 ppm was more efficient in reducing infection with damping-off, root rot and wilt diseases as well as increasing the seedling fresh weight, dry weight, plant length, plant branching, number of pod plant-1 and pod yield plant-1. On the other hand, all tested antioxidants had less or no effect on mycelial dry weight and mycelial leaner growth. On the contrary, all chemicals much reduced spore formation in both Fusarium species at 100 or 200 ppm and the inhibitory effect of antioxidants increased with increasing their concentrations.

2019 ◽  
Author(s):  
Katarzyna Gleń-Karolczyk ◽  

Horseradish roots, due to the content of many valuable nutrients and substances with healing and pro-health properties, are used more and more in medicine, food industry and cosmetics. In Poland, the cultivation of horseradish is considered minor crops. In addition, its limited size causes horseradish producers to encounter a number of unresolved agrotechnical problems. Infectious diseases developing on the leaves and roots during the long growing season reduce the size and quality of root crops. The small range of protection products intended for use in the cultivation of horseradish generates further serious environmental problems (immunization of pathogens, low effectiveness, deterioration of the quality of raw materials intended for industry, destruction of beneficial organisms and biodiversity). In order to meet the problems encountered by horseradish producers and taking into account the lack of data on: yielding, occurrence of infectious diseases and the possibility of combating them with methods alternative to chemical ones in the years 2012–2015, rigorous experiments have been carried out. The paper compares the impact of chemical protection and its reduced variants with biological protection on: total yield of horseradish roots and its structure. The intensification of infectious diseases on horseradish leaves and roots was analyzed extensively. Correlations were examined between individual disease entities and total yield and separated root fractions. A very important and innovative part of the work was to learn about the microbial communities involved in the epidemiology of Verticillium wilt of horseradish roots. The effect was examined of treatment of horseradish cuttings with a biological preparation (Pythium oligandrum), a chemical preparation (thiophanate-methyl), and the Kelpak SL biostimulator (auxins and cytokinins from the Ecklonia maxima algae) on the quantitative and qualitative changes occurring in the communities of these microorganisms. The affiliation of species to groups of frequencies was arranged hierarchically, and the biodiversity of these communities was expressed by the following indicators: Simpson index, Shannon–Wiener index, Shannon evenness index and species richness index. Correlations were assessed between the number of communities, indicators of their biodiversity and intensification of Verticillium wilt of horseradish roots. It was shown that the total yield of horseradish roots was on average 126 dt · ha–1. Within its structure, the main root was 56%, whereas the fraction of lateral roots (cuttings) with a length of more than 20 cm accounted for 26%, and those shorter than 20 cm for 12%, with unprofitable yield (waste) of 6%. In the years with higher humidity, the total root yield was higher than in the dry seasons by around 51 dt · ha–1 on average. On the other hand, the applied protection treatments significantly increased the total yield of horseradish roots from 4,6 to 45,3 dt · ha–1 and the share of fractions of more than 30 cm therein. Higher yielding effects were obtained in variants with a reduced amount of foliar application of fungicides at the expense of introducing biopreparations and biostimulators (R1, R2, R3) and in chemical protection (Ch) than in biological protection (B1, B2) and with the limitation of treatments only to the treatment of cuttings. The largest increments can be expected after treating the seedlings with Topsin M 500 SC and spraying the leaves: 1 × Amistar Opti 480 SC, 1 × Polyversum WP, 1 × Timorex Gold 24 EC and three times with biostimulators (2 × Kelpak SL + 1 × Tytanit). In the perspective of the increasing water deficit, among the biological protection methods, the (B2) variant with the treatment of seedlings with auxins and cytokinins contained in the E. maxima algae extract is more recommended than (B1) involving the use of P. oligandrum spores. White rust was the biggest threat on horseradish plantations, whereas the following occurred to a lesser extent: Phoma leaf spot, Cylindrosporium disease, Alternaria black spot and Verticillium wilt. In turn, on the surface of the roots it was dry root rot and inside – Verticillium wilt of horseradish roots. The best health of the leaves and roots was ensured by full chemical protection (cuttings treatment + 6 foliar applications). A similar effect of protection against Albugo candida and Pyrenopeziza brassicae was achieved in the case of reduced chemical protection to one foliar treatment with synthetic fungicide, two treatments with biological preparations (Polyversum WP and Timorex Gold 24 EC) and three treatments with biostimulators (2 × Kelpak SL, 1 × Tytanit). On the other hand, the level of limitation of root diseases comparable with chemical protection was ensured by its reduced variants R3 and R2, and in the case of dry root rot, also both variants of biological protection. In the dry years, over 60% of the roots showed symptoms of Verticillium wilt, and its main culprits are Verticillium dahliae (37.4%), Globisporangium irregulare (7.2%), Ilyonectria destructans (7.0%), Fusarium acuminatum (6.7%), Rhizoctonia solani (6.0%), Epicoccum nigrum (5.4%), Alternaria brassicae (5.17%). The Kelpak SL biostimulator and the Polyversum WP biological preparation contributed to the increased biodiversity of microbial communities associated with Verticillium wilt of horseradish roots. In turn, along with its increase, the intensification of the disease symptoms decreased. There was a significant correlation between the richness of species in the communities of microbial isolates and the intensification of Verticillium wilt of horseradish roots. Each additional species of microorganism contributed to the reduction of disease intensification by 1,19%.


Plant Disease ◽  
2012 ◽  
Vol 96 (4) ◽  
pp. 591-591 ◽  
Author(s):  
K. L. Schroeder ◽  
T. C. Paulitz

Rhizoctonia root rot occurs commonly on canola (Brassica napus L.) in Washington State. Recently, isolates of an additional pathogen were found to be involved in this disease complex. Isolates of an AG-I-like Ceratobasidium sp. were collected from roots and root zone soil in central Washington near Ritzville. Identity of selected isolates was verified by sequencing the internal transcribed spacer (ITS) region of the rDNA (GenBank Accession Nos. JQ247570, JQ247571, and JQ247572), with a 90 to 93% identity to AG-I. All isolates also amplified with AG-I-like specific primers (1). Six isolates were included in pathogenicity assays conducted in the greenhouse. There were five replicates of three plants for each treatment and the experiment was conducted twice. Pasteurized soil was infested with ground oat inoculum (1%) and placed into containers (3.8 × 21 cm). Infested soils were seeded with canola, chickpea (Cicer arietinum L.), lentil (Lens culinaris Medik.), pea (Pisum sativum L.), barley (Hordeum vulgare L.), or wheat (Triticum aestivum L.). After 3 weeks of incubation at 15°C, the plants were destructively harvested. The emergence of canola was consistently reduced in soil infested with a Ceratobasidium sp., with reductions of 0 to 23% (average 11%). There was no postemergence damping-off, a symptom commonly associated with AG-2-1 (2). Plant height and top dry weights were significantly reduced for canola seeded into infested soil. Heights of plants growing in infested soil was reduced by 25 to 53% (average 42%) and top dry weight was reduced by 37 to 81% (average 61%) compared with the noninfested control. The legume hosts tested in this study were also affected by this Ceratobasidium sp., but to a lesser extent. Compared with the noninfested controls, there was evidence of preemergence damping-off in chickpea (0 to 27%, average 13%) and pea plants were consistently stunted (5 to 23%, average 12%). Chickpea and pea plants grown in infested soil also had reduced top dry weights of 9 to 28% (average 17%) and 13 to 35% (average 21%), respectively. The roots of all infected hosts had a characteristic brown discoloration with tapered, rotted root tips (spear tips). There was no reduction in emergence or plant height of wheat and barley; there was inconsistent reduction in dry weight of these plants. To our knowledge, this is the first report of a Ceratobasidium sp. causing disease on canola in Washington State. References: (1) P. A. Okubara et al. Phytopathology 98:837, 2008. (2) T. C. Paulitz et al. Plant Dis. 90:829, 2006.


Plant Disease ◽  
1998 ◽  
Vol 82 (3) ◽  
pp. 291-293 ◽  
Author(s):  
K. Zaki ◽  
I. J. Misaghi ◽  
A. Heydari ◽  
M. N. Shatla

Four field trials were conducted in April 1995 and 1996 in Arizona to compare the effectiveness of: 1, a soil drench of isolate D1 of Burkholderia (Pseudomonas) cepacia; 2, isolate D1 barley meal formulation; 3, Deny seed treatment (a peat moss-based formulation of B. cepacia); 4, Deny soil drench; 5, Kodiak seed treatment (a formulation of Bacillus subtilis); 6, a mixture of three fungicides (metalaxyl, triadimenol, and thiram) seed treatment; and 7, a mixture of metalaxyl, triadimenol, thiram, and Kodiak seed treatment to increase cotton stand in the field. Except for D1, the other products are being marketed for the control of cotton seedling damping-off. Only D1 soil drench and a mixture of the three fungicides seed treatment increased cotton stand significantly (P ≤ 0.05) in three of four field trials.


1938 ◽  
Vol 16c (1) ◽  
pp. 27-37 ◽  
Author(s):  
F. J. Greaney

The influence of phosphate deficiencies on infection of wheat by Fusarium culmorum (W. G. Sm.) Sacc. was studied. Marquis wheat was grown in pot cultures of quartz sand with different types of manuring, including a fully manured control, and four series having deficiencies of phosphate. One-half of the pots were inoculated with F. culmorum and sown with inoculated seed, the remainder served as uninoculated controls. The plants were grown for 36 days. The experimental data were treated by the analysis of variance method.Under the conditions of the experiment, deficiencies in phosphate did not significantly increase or decrease the susceptibility of wheat plants to root rot caused by F. culmorum. On the other hand, deficiencies in phosphate significantly reduced root development and total dry weight of the plants. The results suggest that the effect of phosphatic fertilizers is much more important on plant growth and yield than on the severity of infection by F. culmorum.


2021 ◽  
Vol 20 (1) ◽  
pp. e809
Author(s):  
Abdulnabi Abbdul Ameer Matrood ◽  
Abdelhak Rhouma

Several pathogens fungi responsible for total yield losses are worldwide spread notably in Iraq. The alternatives strategies to decrease disease development are those able to destruct a total or partial population density using eco-friendly approach treatments. In this investigation, we demonstrate the symbiotic interaction with Trichoderma koningii, Aspergillus niger and Mucor sp. on the eggplant plants growth and development, and on the defence response induction. The results revealed that the highest fungal frequency from eggplant rhizosphere was registered for A. niger, followed by Mucor sp. and T. koningii. Seeds treatment with T. koningii showed a higher value of length of shoots (2.83 cm), roots (3.00 cm), and leaves (3.50 cm). Obtained results revealed that T. koningii ameliorates the seedling fresh (3.91 g), dry weight (0.24 g), and accelerates plant length (48.67 cm). Obtained results revealed increasing of peroxidase activity (12.53, 12.68, and 11.28 10-1 units.g.mL.min-1, respectively) and chlorophyll content (2.11, 1.70, and 1.90 mg.g-1 fresh weight, respectively) eggplants treated with combination Mucor sp. + A. niger + T. koningii, T. koningii + Mucor sp., and T. koningii alone. To control pathogens fungi within integrated management strategies, the biological control should be taken into consideration.  


2017 ◽  
Vol 14 (1) ◽  
pp. 22-31
Author(s):  
Baghdad Science Journal

This study was conducted to determine the fungal cause and bio control of damping off and root rot of wheat plants by using pseudomonas fluorescens under greenhouse and field conditions. Results showed isolation of eight species from the soil and roots to deferent region of Baghdad government. Rhizoctonia solani (Rs) and Fusarium solani (Fs) were the predominant damping off fungus with frequency 60 and 52% respectively. Led the using of bacteria formulations such as crud suspension , pure bacteria filtration and pure living cells in culture medium inhibit all type fungi with rates ranging from 84-96% , 80- 93% and 75-88% respectively. Rs and Fs were more pathogenesis under greenhouse conditions, with incidence of 80 and 68% and disease severity up to 41,20 and 30,20% respectively. The results of test bacterial formulation (dry, liquid and bacterial filtrate ) with seeds, soil and water irrigation showed high effectiveness for all treatments with superiority of the treatment of seeds in reducing the incidence which reached for the three formulation 21-34% compared with the infested control of Fs, Rs which reached 70 and 55%, respectively. Field experiments results showed superiority of seeds bacterization with dry formulation to reduce the disease incidence to 38% compared with the infested control (75%).These results reflected on the increasing of the shoot and rot dry weight and increasing the productivity (63%) compared with the infested control treatment .


HortScience ◽  
1996 ◽  
Vol 31 (2) ◽  
pp. 198-200 ◽  
Author(s):  
Carl E. Motsenbocker

Pepperoncini pepper (Capsicum annuum var. annuum L. `Golden Greek') was grown at in-row spacings of 7.5, 15, 22.5, 30, and 45 cm to determine the effect of plant population on growth and fruit yield in a 2-year field study. In 1992, pepper plants grown at the 15-cm in-row spacing had the lowest plant, stem, and leaf dry weights, while plants at the lowest density (45-cm spacing) had the highest plant, leaf, and stem dry weights and the largest leaf area (LA). Of plants grown at the 7.5-cm spacing, the total yield and fruit count per hectare were higher than at the other spacings; however, fruit yield per plant was lowest. In 1993, the lowest plant and leaf dry weights and LA and highest LA index (LAI) were from plants at the 7.5-cm in-row spacing. Plants at the 45-cm spacing had the highest plant and leaf dry weight and LA and the lowest LAI. Pepper plants grown at the narrowest spacing produced the lowest early and total fruit yield per plant but the most fruit per hectare. In general, plants grown at the narrowest spacings produced the smallest plant, leaf, and stem biomass but resulted in the highest fruit yields and counts per hectare and the lowest fruit yields per plant.


2010 ◽  
Vol 27 (2) ◽  
pp. 85-91 ◽  
Author(s):  
Martin Šlachta ◽  
Jan Frelich ◽  
Tomáš Tonka

Function of coprophagous beetles (Coleoptera: Scarabaeidae, Geotrupidae, Hydrophilidae) in cattle pastures inferred from pitfall trapping dataAn analysis of data on the dry weight biomass of coprophagous beetles in standardized dung (4.5 l) was conducted in order to characterize the spatial and the seasonal distribution of the beetles' biomass in cattle pastures and to elucidate their function in dung decomposition. Nested Anova with factors of farm, site (nested in farm), seasonal period and year was used to evaluate the effect of these factors on the biomass of four functional species groups: the dung dwellers ofScarabaeidae(subfamilyAphodiinae), the dung dwellers ofHydrophilidae, the small tunnellers ofScarabaeidae(subfamilyCoprinae) and the large tunnellers ofGeotrupidae. The spatial variation of biomass (between the sites and the farms) was insignificant (P>0.05) in the two dung-dweller groups and in the large-tunnellers group. On the other hand, a significant (P<0.05) seasonal variation of biomass was found in all but the large tunneller group. In dung dwellers, the spring biomass was formed mainly by two species,Aphodius prodromusandA. sphacelatus. In summer, most of the biomass was accounted for bySphaeridium lunatum, S. scarabaeoidesandA. rufipes. In the two tunneller groups,Onthophagus fracticornis, Geotrupes stercorariusandG. spinigerformed a majority of the biomass in dung.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 649
Author(s):  
Estefanía Noriega-Fernández ◽  
Izumi Sone ◽  
Leire Astráin-Redín ◽  
Leena Prabhu ◽  
Morten Sivertsvik ◽  
...  

The aim of this work was to evaluate the potential of ultrasound (US), alone or in combination with mild heating and/or EDTA towards reduction of As, Cd, I, and Hg content of Laminaria hyperborea. Concentrations of As, Cd, I, and Hg of 56.29, 0.596, 7340, and <0.01 mg kg−1 of dry weight, respectively, were found in L. hyperborea blades. Treatment with US at 50 °C increased approx. 2-fold the amount of As released, although did not affect significantly the content of Cd or I, as compared to control (no US) samples. Reducing the temperature to 8 °C significantly decreased the effect of US, but heating at 80 °C did not cause a significant effect as compared to treatments at 50 °C. On the other hand, treatment with 0.1 N EDTA at 50 °C enhanced the percentage of Cd released by approximately 7-fold, regardless of sonication. In the present work, the combination of US and EDTA at 50 °C for 5 min led to a significant reduction of the As (32%), Cd (52%) and I (31%) content in L. hyperborea, thus improving the product’s safety for consumers.


Sign in / Sign up

Export Citation Format

Share Document