scholarly journals Systematic Comparisons of Orthologous Selenocysteine Methyltransferase and Homocysteine Methyltransferase Genes from Seven Monocots Species

2015 ◽  
Vol 7 (2) ◽  
pp. 210-216 ◽  
Author(s):  
De-yong ZHAO ◽  
Fu-lai SUN ◽  
Bo ZHANG ◽  
Zhi-qiang ZHANG ◽  
Long-quan YIN

Identifying and manipulating genes underlying selenium metabolism could be helpful for increasing selenium content in crop grain, which is an important way to overcome diseases resulted from selenium deficiency. A reciprocal smallest distance algorithm (RSD) approach was applied using two experimentally confirmed Homocysteine S-Methyltransferases genes (HMT1 and HMT2) and a putative Selenocysteine Methyltransferase (SMT) from dicots plant Arabidopsis thaliana, to explore their orthologs in seven sequenced diploid monocot species: Oryza sativa, Zea mays, Sorghum bicolor, Brachypodium distachyon, Hordeum vulgare, Aegilops tauschii (the D-genome donor of common wheat) and Triticum urartu (the A-genome donor of common wheat). HMT1 was apparently diverged from HMT2 and most of SMT orthologs were the same with that of HMT2 in this study, leading to the hypothesis that SMT and HMT originate from one common ancestor gene. Identifying orthologs provide candidates for further experimental confirmation; also it could be helpful in designing primers to clone SMT or HMT orthologs in other crops.

2009 ◽  
Vol 7 (1) ◽  
pp. 72-79 ◽  
Author(s):  
Perumal Azhaguvel ◽  
Wanlong Li ◽  
Jackie C. Rudd ◽  
Bikram S. Gill ◽  
G. J. Michels ◽  
...  

False brome grass, Brachypodium distachyon (L.) Beauv, has been proposed as a new model species to bridge rice and temperate cereal crops for genomics research. However, much basic information for this species is still lacking. In this study, six diploid B. distachyon (2n = 2x = 10) accessions (Bd1-1, Bd2-3, Bd3-1, Bd18-1, Bd21 and BD29) were evaluated for their response to infestation by two cereal aphid pests of common wheat (Triticum aestivum L.): the greenbug, Schizaphis graminum Rondani, and the Russian wheat aphid (RWA), Diuraphis noxia Mordvilko. Through database mining of B. distachyon expressed sequence tag (EST) and genomic DNA sequences, 160 EST- and 21 genomic microsatellite markers were developed and used to evaluate genetic diversity among the B. distachyon accessions. All six accessions were resistant to RWA biotype RWA1 but showed distinct responses to feeding by greenbug biotypes C and E, as well as RWA2 RWAs. Although microsatellite-based genetic diversity among different accessions was generally low, Bd1-1 and BD29 were the most diverged from the other four lines. The genetic divergence was correlated with geographical distances between the Brachypodium accessions. Comparison of simple sequence repeat polymorphisms in three inbred lines (Bd2-3, Bd3-1 and Bd18-1) with their respective original parental lines revealed no effect of inbreeding on genetic diversity. Phylogenetic analysis suggested that Aegilops tauschii (Coss.) Schmal., the D genome donor of common wheat, was closer to B. distachyon than to rice. The greenbug - B. distachyon system seems to be a model of choice for plant–aphid interaction studies in the grass genome.


Genetics ◽  
2000 ◽  
Vol 155 (1) ◽  
pp. 361-367 ◽  
Author(s):  
Wolfgang Spielmeyer ◽  
Odile Moullet ◽  
André Laroche ◽  
Evans S Lagudah

Abstract A detailed RFLP map was constructed of the distal end of the short arm of chromosome 1D of Aegilops tauschii, the diploid D-genome donor species of hexaploid wheat. Ae. tauschii was used to overcome some of the limitations commonly associated with molecular studies of wheat such as low levels of DNA polymorphism. Detection of multiple loci by most RFLP probes suggests that gene duplication events have occurred throughout this chromosomal region. Large DNA fragments isolated from a BAC library of Ae. tauschii were used to determine the relationship between physical and genetic distance at seed storage protein loci located at the distal end of chromosome 1DS. Highly recombinogenic regions were identified where the ratio of physical to genetic distance was estimated to be <20 kb/cM. These results are discussed in relation to the genome-wide estimate of the relationship between physical and genetic distance.


2008 ◽  
Vol 88 (6) ◽  
pp. 1065-1071 ◽  
Author(s):  
Qijiao Chen ◽  
Lianquan Zhang ◽  
Zhongwei Yuan ◽  
Zehong Yan ◽  
Youliang Zheng ◽  
...  

Due to the high polymorphisms between synthetic hexaploid wheat (SHW) and common wheat, SHW has been widely used in genetic studies. The transferability of simple sequence repeats (SSR) among common wheat and its donor species, Triticum turgidum and Aegilops tauschii, and their SHW suggested the possibility that some SSRs, specific for a single locus in common wheat, might appear in two or more loci in SHWs. This is an important genetic issue when using synthetic hexaploid wheat population and SSR for mapping. However, it is largely ignored and never empirically well verified. The present study addressed this issue by using the well-studied SSR marker Xgwm261 as an example. The Xgwm261 produced a 192 bp fragment specific to chromosome 2D in common wheat Chinese Spring, but generated a 176 bp fragment in the D genome of Ae. tauschii AS60. Chromosomal location and DNA sequence data revealed that the176 bp fragment also donated by 2B chromosome of durum wheat Langdon. These results indicated that although a single 176 bp fragment was appeared in synthetic hexaploid wheat Syn-SAU-5 between Langdon and AS60, the fragment contained two different loci, one from chromosome 2D of AS60 and the other from 2B of Langdon which were confirmed by the segregating analysis of SSR Xgwm261 in 185 plants from a F2 population between Syn-SAU-5 and Chinese Spring. If Xgwm261 in Syn-SAU-5 was considered as a single locus in genetic analysis, distorted segregation or incorrect conclusions would be yielded. A proposed strategy to avoid this problem is to include SHW’s parental T. turgidum and Ae. tauschii in SSR analysis as control for polymorphism detection. Key words: Synthetic hexaploid wheat, microsatellite, segregation distortion, Xgwm261, transferability


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yongchao Hao ◽  
Shoushen Xu ◽  
Zhongfan lyu ◽  
Hongwei Wang ◽  
Lingrang Kong ◽  
...  

Glutathione S-transferases (GSTs) are ancient proteins encoded by a large gene family in plants, which play multiple roles in plant growth and development. However, there has been little study on the GST genes of common wheat (Triticum aestivum) and its relatives (Triticum durum, Triticum urartu, and Aegilops tauschii), which are four important species of Triticeae. Here, a genome-wide comprehensive analysis of this gene family was performed on the genomes of common wheat and its relatives. A total of 346 GST genes in T. aestivum, 226 in T. durum, 104 in T. urartu, and 105 in Ae. tauschii were identified, and all members were divided into ten classes. Transcriptome analysis was used to identify GST genes that respond to salt stress in common wheat, which revealed that the reaction of GST genes is not sensitive to low and moderate salt concentrations but is sensitive to severe concentrations of the stressor, and the GST genes related to salt stress mainly come from the Tau and Phi classes. Six GST genes which respond to different salt concentrations were selected and validated by a qRT-PCR assay. These findings will not only provide helpful information about the function of GST genes in Triticeae species but also offer insights for the future application of salt stress resistance breeding in common wheat.


2007 ◽  
Vol 3 (1) ◽  
pp. 77-82 ◽  
Author(s):  
Qi-Jiao Chen ◽  
Lian-Quan Zhang ◽  
You-Wei Yang ◽  
Zhong-Wei Yuan ◽  
Zhi-Guo Xiang ◽  
...  

1972 ◽  
Vol 14 (2) ◽  
pp. 305-316 ◽  
Author(s):  
H. C. Dass

Thin-layer chromatographic studies on flavonoids, and disc electrophoretic studies on proteins and esterase isoenzymes were conducted with Avena to determine species relationships and genome homologies. Distinctness of Avena ventricosa and A. pilosa was observed in comparison to other diploid species. Closeness of the diploid species of the A. strigosa group (including hirtula and wiestii) was evident from the similarity of their protein and esterase spectra. The tetraploid species, A. barbata and A. abyssinica, were found to be very close to A. hirtula and A. strigosa, respectively, by TLC studies. Proteins and esterases also showed that the tetraploid species are very close to the A. strigosa group of diploid species. The contribution of a genome by the A. strigosa group to the tetraploids and hexaploids was confirmed. The hexaploids showed different protein and esterase patterns. The involvement of A. ventricosa as the C genome donor to the hexaploids was shown by the protein and esterase spectra. A few extra protein bands observed may have been from the D genome.


Genome ◽  
2011 ◽  
Vol 54 (4) ◽  
pp. 273-284 ◽  
Author(s):  
Shunli Wang ◽  
Xiaohui Li ◽  
Ke Wang ◽  
Xiaozheng Wang ◽  
Shanshan Li ◽  
...  

Phylogenetic relationships between the C, U, N, and M genomes of Aegilops species and the genomes of common wheat and other related species were investigated by using three types of low-molecular-weight glutenin subunit (LMW-GS) genes at Glu-3 loci. A total of 20 LMW-GS genes from Aegilops and Triticum species were isolated, including 11 LMW-m type and 9 LMW-i type genes. Particularly, four LMW-m type and three LMW-i type subunits encoded by the genes on the C, N, and U genomes possessed an extra cysteine residue at conserved positions, which could provide useful information for understanding phylogenetic relationships among Aegilops and Triticum genomes. Phylogenetic trees constructed by using either LMW-i or the combination of LMW-m and LMW-s, as well as analysis of all the three types of LMW-GS genes together, demonstrated that the C and U genomes were closely related to the A genome, whereas the N and M genomes were closely related to the D genome. Our results support previous findings that the A genome was derived from Triticum uratu, the B genome was from Aegilops speltoides, and the D genome was from Aegilops tauschii. In addition, phylogenetic relationships among different genomes analysed in this study support the concept that Aegilops is not monophyletic.


Diversity ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 217
Author(s):  
Mazin Mahjoob Mohamed Mahjoob ◽  
Tai-Shen Chen ◽  
Yasir Serag Alnor Gorafi ◽  
Yuji Yamasaki ◽  
Nasrein Mohamed Kamal ◽  
...  

Aegilops tauschii Coss., the D genome donor of hexaploid wheat (Triticum aestivum L.), is the most promising resource used to broaden the genetic diversity of wheat. Taxonomical studies have classified Ae. tauschii into two subspecies, ssp. tauschii and ssp. strangulata. However, molecular analysis revealed three distantly related lineages, TauL1, TauL2 and TauL3. TauL1 and TauL3 includes the only ssp. tauschii, whereas TauL2 includes both subspecies. This study aimed to clarify the phylogeny of Ae. tauschii and to find the traits that can differentiate between TauL1, TauL2 and TauL3, or between ssp. tauschii and ssp. strangulata. We studied the genetic and morpho-physiological diversity in 293 accessions of Ae. tauschii, covering the entire range of the species. A total of 5880 high-quality SNPs derived from DArTseq were used for phylogenetic cluster analyses. As a result, we observed wide morpho-physiological variation in each lineage and subspecies. Despite this variation, no key traits can discriminate lineages or subspecies though some traits were significantly different. Of 124 accessions previously lacking the passport data, 66 were allocated to TauL1, 57 to TauL2, and one to TauL3.


2017 ◽  
Vol 08 (11) ◽  
pp. 2769-2784
Author(s):  
Ayaka Kakizaki ◽  
Taihachi Kawahara ◽  
Mikhail Alexandrovich Zhuk ◽  
Tamara Nikolaevna Smekalova ◽  
Kazuhiro Sato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document