scholarly journals Foams based on industrial waste

2020 ◽  
Vol 12 (4) ◽  
Author(s):  
Nadezhda Manakova

Substantial volumes of tailings and waste rocks placed in dumps create serious environmental and economic damage in mining areas and adjacent territories. The development of technologies for processing waste into heat-insulating building materials (foam glass) will make it possible to reduce the burden on the environment, as well as reduce the cost of finished building products. The article substantiates the possibility of obtaining block foamed materials for the production of heat-insulating materials based on man-made waste using low-temperature technology. The author investigated the ways of improving the operational properties of foam silicates by introducing modifying additives (apatite-nepheline waste, fly ash). To obtain foam silicates based on silica-containing waste, a liquid glass composition was prepared, into which additives were introduced. After molding and drying, the samples were swollen. Physical, chemical and thermal properties of foamed silicate materials made of silica-containing raw materials were determined taking into account the requirements of GOST for thermal insulation construction materials. To determine the thermal conductivity coefficient, an ITP-MG 4 electronic thermal conductivity meter was used. Microscopic studies were carried out using a SEM LEO 420 scanning microscope. The author of the article proposes the optimal compositions and conditions for obtaining foam materials that meet the regulatory requirements for materials and products for building insulation. Foamed materials with density up to 0.55 g/cm3, strength 5.5 MPa, water absorption 15–22 %, thermal conductivity 0.09–0.104 W•m/K were obtained. Foam glass materials have a wide range of properties: non-flammable, environmentally friendly, have a long service life, and are not subject to mold deterioration. The obtained materials can be recommended for use as thermal insulation in the construction and reconstruction of industrial and civil buildings and structures.

2011 ◽  
Vol 99-100 ◽  
pp. 1117-1120 ◽  
Author(s):  
Mao Quan Xue

As new building materials, plastic has light weigh, corrosion resistance, low thermal conductivity, thermal insulation, waterproof, energy-saving, molding convenient, high recycling characteristic, widely used in building materials. According to the research of improving its flame retardancy, strength, thermal insulation, waterproof properties, the application of plastic use in doors and windows, pipeline, building walls and roofs of buildings, etc. were reviewed, and the developing direction was discussed.


2021 ◽  
Vol 340 ◽  
pp. 01003
Author(s):  
Liliya Berdnikova ◽  
Fedor Gorbunov ◽  
Andrey Lapin

The results of research on the development of compositions of construction materials for structural purposes based on technogenic waste and mineral raw materials are presented. The possibility of obtaining materials with a wide range of operational properties by the methods of slip casting (compressive strength of the samples based on chamotte and sand is 53.0–95.9 and 50.0-69.5 MPa, bending strength is 8.1–16.5 and 8.5–15.3 MPa, abrasion is 0.2–0.36 and 0.15–0.39 g/cm2, respectively) and semi-dry pressing (compressive strength of the samples based on chamotte and sand are 19.1–43.5 and 18.3–32.6 MParespectively) isdemonstrated.


MRS Bulletin ◽  
2004 ◽  
Vol 29 (5) ◽  
pp. 308-313 ◽  
Author(s):  
Karen Scrivener ◽  
Henri Van Damme

AbstractThis article serves to introduce the May 2004 issue of MRS Bulletin on Construction Materials: From Innovation to Conservation. By volume, building materials are by far the most widely used type of materials. The most common construction materials—concrete and wood—are paradigms of complex and hierarchical materials, with a microstructure extending quasi-continuously down to the nanoscale. In the past, most improvements have been obtained by modifying the microstructure at the largest scales, for instance, by reducing the macroporosity. Recent advances in our understanding of the interactions and microstructure development show that the major levers for improvement from now on will rely on surface and colloid science and the science of complex materials, often at the nanoscale. This can lead to remarkable properties, such as self-compaction and ultrahigh strength, and even new functionality, such as self-cleaning through photocatalysis. Construction materials face a wide range of challenges today, many of which are linked to the need for more sustainable development: reducing the consumption of raw materials, reducing the energy used in processing, and increasing service life. In many parts of the world, there is also an increasing need to repair, rehabilitate, and conserve old buildings. The articles in this issue touch on these challenges as well as the advances being made in construction materials through materials research.


2014 ◽  
Vol 604 ◽  
pp. 285-288 ◽  
Author(s):  
Saulius Vaitkus ◽  
Rūta Karpavičiūtė ◽  
Sigitas Vėjelis ◽  
Lina Lekūnaitė

Natural fibres from flax and hemp are used as raw materials for efficient thermal insulation. In current work, tests were carried out using chopped and combed long flax fibres as well as chopped and combed long hemp fibres. Investigations have shown that thermal conductivity of natural fibres depends on their preparation method (combing, chopping) and materials density.


2011 ◽  
Vol 335-336 ◽  
pp. 1412-1417 ◽  
Author(s):  
Jiri Zach ◽  
Jitka Peterková ◽  
Vít Petranek ◽  
Jana Kosíková ◽  
Azra Korjenic

Production of building materials is mostly energy consuming. In the sphere of insulation materials we mostly see rock wool based materials or foam-plastic materials whose production process is demanding from material aspect and raw materials aspect as well. At present the demand for thermal insulation materials has been growing globally. The thermal insulation materials form integral part of all constructions in civil engineering. The materials mainly fulfill the thermal insulating functions and also the sound-insulating one. The majority of thermal insulation materials are able to fulfill both of the functions simultaneously. The paper describes questions of thermal insulation materials development with good sound properties based on natural fibres that represent a quickly renewable source of raw materials coming from agriculture. The main advantage of the materials are mainly the local availability and simple renewability of the raw materials. In addition an easy recycling of the materials after their service life end in the building construction and last but not least also the connection of human friendly properties of organic materials with advanced product manufacture qualities of modern insulation materials.


Author(s):  
Rijk Block ◽  
Barbara Kuit ◽  
Torsten Schröder ◽  
Patrick Teuffel

<p>The structural engineering community has a strong responsibility to contribute to a more efficient use of natural resources. Nowadays the construction industry is by far the most resource intense industry sector, approximately 40-50% of all primary raw materials are used, which raises the question about the architects and engineer’s accountability. In this context and as a result of the Paris Climate agreement the Dutch government defined the program “Nederland Circulair in 2050”, which states the ambition to use 50% less primary materials in 2030 and to have a full circular economy in 2050.</p><p>One possible approach to achieve these ambitious goals is the application of renewable, bio-based materials in the built environment and to replace traditional, typically cement-based, materials. Already in the past natural building materials, such as timber and bamboo have been used widely, but in recent years new materials came up and provide new opportunities to be used in the construction industry. The authors explored various alternatives, such as hemp and flax fibres, mycelium and lignin-based fibres for composite materials, which will be described with various experimental and realised case studies.</p>


Author(s):  
Agnieszka Greszta ◽  
Sylwia Krzemińska ◽  
Grażyna Bartkowiak ◽  
Anna Dąbrowska

Abstract Aerogels are ultra-light solids with extremely low thermal conductivity (even lower than air), thanks to which they have a huge potential in a wide range of applications. The purpose of this publication is to present the state-of-the art knowledge of the possibility of using aerogels to increase the thermal insulation properties of clothing materials intended for use in both cold and hot environments. Various methods of aerogels application to textile materials (non-woven, woven and knitted fabrics) are discussed, indicating their advantages and limitations. Numerous research studies confirm that aerogels significantly improve the thermal insulation properties of materials, but due to their delicate and brittle structure and their tendency to dusting, their application still poses considerable problems.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 54 ◽  
Author(s):  
Zipeng Qin ◽  
Gang Li ◽  
Yan Tian ◽  
Yuwei Ma ◽  
Pengfei Shen

The effects of fly ash, sodium carbonate content, foaming temperature and foaming time on foam glass aperture sizes and their distribution were analyzed by the orthogonal experimental design. Results from the steady-state method showed a normal distribution of the number of apertures with change in average aperture, which ranges from 0.1 to 2.0 mm for more than 93% of apertures. For a given porosity, the thermal conductivity decreases with the increase of the aperture size. The apertures in the sample have obvious effects in blocking the heat flow transmission: heat flow is quickly diverted to both sides when encountered with the aperture. When the thickness of the sample is constant, the thermal resistance of the foam glass sample increases with increasing porosity, leading to better thermal insulation. Furthermore, our results suggest that the more evenly distributed and orderly arranged the apertures are in the foam glass material, the larger the thermal resistance of the material and hence, the better the thermal insulation.


2019 ◽  
Vol 974 ◽  
pp. 356-361
Author(s):  
O.V. Kuznetsova ◽  
N.D. Yatsenko ◽  
A.I. Subbotin ◽  
M.Yu. Klimenko

The modern building materials market places high demands on heat-insulating and heat-insulating structural materials. In this connection, the issues of developing high-quality building materials obtained on the resource-saving technologies basis allowing to solve two interrelated problems are topical. The first problem is the industrial waste generated and existing stocks disposal. The second is associated with a decrease in the traditional raw materials deficit [1]. These problems solution, combining rational technological solutions, is based on the scientific research achievements in this area, in particular in the foam glass production. The priority scientific research areas in the foam glass materials production are the developments related to the study, the new raw materials use and the production of foam glass mixture compositions on their basis, which provide, along with the necessary performance properties, high environmental safety requirements [2, 3].


2020 ◽  
Vol 992 ◽  
pp. 253-258
Author(s):  
M.P. Lebedev ◽  
V.N. Tagrov ◽  
E.S. Lukin

The article deals with the manufacture of modern structural ceramic materials from clay and loam deposits of the Republic of Sakha (Yakutia). The importance and relevance of the development of the production of building materials from local raw materials is emphasized, since this will certainly affect the effectiveness of the construction complex as a whole. The successful development of the construction complex is capable of not only stimulating growth in all sectors of the economy, but also contributes to solving the most pressing social problems. Today, Yakutia has huge reserves of mineral raw materials for the production of a wide range of building materials and products. Of practical interest are wall materials made from clay soils. Given the features of the region’s raw material base, this work focuses on additional processing of traditional material. Controlling the complex physicochemical and structural-mechanical transformations that occur during heat treatment, a methodology has been developed for creating a composite material that will allow competitive innovative materials with enhanced strength properties to be produced with a reinforcing element with a glassy phase matrix of mullite crystals. The fabricated samples have a wide range of physical and mechanical properties and allow using it as a high-quality structural building ceramics, as well as industrial floor technical tile.


Sign in / Sign up

Export Citation Format

Share Document