scholarly journals Effective building materials using technogenic waste and mineral raw materials

2021 ◽  
Vol 340 ◽  
pp. 01003
Author(s):  
Liliya Berdnikova ◽  
Fedor Gorbunov ◽  
Andrey Lapin

The results of research on the development of compositions of construction materials for structural purposes based on technogenic waste and mineral raw materials are presented. The possibility of obtaining materials with a wide range of operational properties by the methods of slip casting (compressive strength of the samples based on chamotte and sand is 53.0–95.9 and 50.0-69.5 MPa, bending strength is 8.1–16.5 and 8.5–15.3 MPa, abrasion is 0.2–0.36 and 0.15–0.39 g/cm2, respectively) and semi-dry pressing (compressive strength of the samples based on chamotte and sand are 19.1–43.5 and 18.3–32.6 MParespectively) isdemonstrated.

2021 ◽  
Vol 340 ◽  
pp. 01004
Author(s):  
Fedor Gorbunov ◽  
Lilia Berdnikova ◽  
Victor Bulgakov ◽  
Alexandra Fadina ◽  
Andrey Lapin

The possibility of using technogenic raw materials – the screening of crushed stone with the addition of cullet based on a silicate binder for the production of construction materials for structural purposes is studied. By varying the processing temperature, it was possible to increase the softening coefficient of the products and to achieve the pH neutrality of their pore liquid. Products processed at a temperature of 500700 °C have the following performance characteristics: the compressive strength 16.6-31.4 MPa, the bendingstrength 3.4-5.9 MPa.


2020 ◽  
Vol 12 (4) ◽  
Author(s):  
Nadezhda Manakova

Substantial volumes of tailings and waste rocks placed in dumps create serious environmental and economic damage in mining areas and adjacent territories. The development of technologies for processing waste into heat-insulating building materials (foam glass) will make it possible to reduce the burden on the environment, as well as reduce the cost of finished building products. The article substantiates the possibility of obtaining block foamed materials for the production of heat-insulating materials based on man-made waste using low-temperature technology. The author investigated the ways of improving the operational properties of foam silicates by introducing modifying additives (apatite-nepheline waste, fly ash). To obtain foam silicates based on silica-containing waste, a liquid glass composition was prepared, into which additives were introduced. After molding and drying, the samples were swollen. Physical, chemical and thermal properties of foamed silicate materials made of silica-containing raw materials were determined taking into account the requirements of GOST for thermal insulation construction materials. To determine the thermal conductivity coefficient, an ITP-MG 4 electronic thermal conductivity meter was used. Microscopic studies were carried out using a SEM LEO 420 scanning microscope. The author of the article proposes the optimal compositions and conditions for obtaining foam materials that meet the regulatory requirements for materials and products for building insulation. Foamed materials with density up to 0.55 g/cm3, strength 5.5 MPa, water absorption 15–22 %, thermal conductivity 0.09–0.104 W•m/K were obtained. Foam glass materials have a wide range of properties: non-flammable, environmentally friendly, have a long service life, and are not subject to mold deterioration. The obtained materials can be recommended for use as thermal insulation in the construction and reconstruction of industrial and civil buildings and structures.


MRS Bulletin ◽  
2004 ◽  
Vol 29 (5) ◽  
pp. 308-313 ◽  
Author(s):  
Karen Scrivener ◽  
Henri Van Damme

AbstractThis article serves to introduce the May 2004 issue of MRS Bulletin on Construction Materials: From Innovation to Conservation. By volume, building materials are by far the most widely used type of materials. The most common construction materials—concrete and wood—are paradigms of complex and hierarchical materials, with a microstructure extending quasi-continuously down to the nanoscale. In the past, most improvements have been obtained by modifying the microstructure at the largest scales, for instance, by reducing the macroporosity. Recent advances in our understanding of the interactions and microstructure development show that the major levers for improvement from now on will rely on surface and colloid science and the science of complex materials, often at the nanoscale. This can lead to remarkable properties, such as self-compaction and ultrahigh strength, and even new functionality, such as self-cleaning through photocatalysis. Construction materials face a wide range of challenges today, many of which are linked to the need for more sustainable development: reducing the consumption of raw materials, reducing the energy used in processing, and increasing service life. In many parts of the world, there is also an increasing need to repair, rehabilitate, and conserve old buildings. The articles in this issue touch on these challenges as well as the advances being made in construction materials through materials research.


2018 ◽  
Vol 931 ◽  
pp. 475-480 ◽  
Author(s):  
Nikolay V. Lyubomirskiy ◽  
Stanisław Fic ◽  
Sergey I. Fedorkin

A technique for determining the modulus of elasticity of сonstruction materials on samples of small dimensions has been developed. Physical and mechanical properties of building materials based on calcareous-lime compositions of semi-dry pressing, hardening according to the principle of forced carbonization, depending on the prescription and technological factors of their production have been studied. It has been demonstrated that on the basis of these materials it is possible to obtain building products with compressive strength up to 30 MPa, tensile strength at bending up to 5 MPa and higher, and an elastic modulus up to 18 GPa.


Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 82
Author(s):  
Salmabanu Luhar ◽  
Demetris Nicolaides ◽  
Ismail Luhar

Even though, an innovative inorganic family of geopolymer concretes are eye-catching potential building materials, it is quite essential to comprehend the fire and thermal resistance of these structural materials at a very high temperature and also when experiencing fire with a view to make certain not only the safety and security of lives and properties but also to establish them as more sustainable edifice materials for future. The experimental and field observations of degree of cracking, spalling and loss of strength within the geopolymer concretes subsequent to exposure at elevated temperature and incidences of occurrences of disastrous fires extend an indication of their resistance against such severely catastrophic conditions. The impact of heat and fire on mechanical attributes viz., mechanical-compressive strength, flexural behavior, elastic modulus; durability—thermal shrinkage; chemical stability; the impact of thermal creep on compressive strength; and microstructure properties—XRD, FTIR, NMR, SEM as well as physico-chemical modifications of geopolymer composites subsequent to their exposures at elevated temperatures is reviewed in depth. The present scientific state-of-the-art review manuscript aimed to assess the fire and thermal resistance of geopolymer concrete along with its thermo-chemistry at a towering temperature in order to introduce this novel, most modern, user and eco-benign construction materials as potentially promising, sustainable, durable, thermal and fire-resistant building materials promoting their optimal and apposite applications for construction and infrastructure industries.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6751
Author(s):  
Konrad A. Sodol ◽  
Łukasz Kaczmarek ◽  
Jacek Szer ◽  
Sebastian Miszczak ◽  
Mariusz Stegliński

This article is motivated by civil fire safety. Fire-prevention engineering demands a wide range of information about building materials including alternative cements, for instance CSA-cement. Because of exposure of the cement-base material to a high temperature, its strength properties deteriorate due to dehydration connected with phase and microstructure changes. Previous research indicated that the main endothermic reaction of CSA-based composite, dehydration of ettringite, might be used as a cooling system for a metal structure during fire-load. This article examines visual assessment, microstructure, density, as well as flexural and compressive strength parameters of CSA-based composite after isothermal heating at temperatures from 23 °C to 800 °C. The results of SEM/EDS investigations showed that the calcium sulfoaluminate paste may start partially re-sintering above 600 °C. Mechanical tests revealed significant reduction of strength parameters but residual compressive strength was maintained in the whole temperature range e.g., 8 MPa at 800 °C. Additionally, visual assessment of the specimens indicated that it might be possible to predict the material temperature heating based on the specific surface color. These findings add to the evidence of general knowledge about CSA hydrates.


Author(s):  
Rijk Block ◽  
Barbara Kuit ◽  
Torsten Schröder ◽  
Patrick Teuffel

<p>The structural engineering community has a strong responsibility to contribute to a more efficient use of natural resources. Nowadays the construction industry is by far the most resource intense industry sector, approximately 40-50% of all primary raw materials are used, which raises the question about the architects and engineer’s accountability. In this context and as a result of the Paris Climate agreement the Dutch government defined the program “Nederland Circulair in 2050”, which states the ambition to use 50% less primary materials in 2030 and to have a full circular economy in 2050.</p><p>One possible approach to achieve these ambitious goals is the application of renewable, bio-based materials in the built environment and to replace traditional, typically cement-based, materials. Already in the past natural building materials, such as timber and bamboo have been used widely, but in recent years new materials came up and provide new opportunities to be used in the construction industry. The authors explored various alternatives, such as hemp and flax fibres, mycelium and lignin-based fibres for composite materials, which will be described with various experimental and realised case studies.</p>


Author(s):  
N. Kozhuhova ◽  
V. Strokova ◽  
R. Chizhov ◽  
M. Kozhuhova

Nowadays, the production of high-performance composites is a relevant objective in construction industry. Normally, geological and/or technological conditions of phase formation are responsible for chemical and structural characteristics of raw materials. In this regard, the use of a certain material dictates terms to optimizing production process, efficient use and, therefore, requires to develop a method for quality evaluation of raw materials. This approach allows a considerable time saving and raw materials sources, while the evaluation of final performance characteristics of designed materials is being done. The biggest interest in this area is focused on new types of developed and poorly-studied composite systems which results in a lack of capacity to design materials with known performance and, therefore, constrains the areas of application of construction composites Among such composite systems there are zero cement alkali-aluminosilicate systems or geopolymers. For geopolymers production a wide range of different aluminosilicates with varied characteristics potentially can be used. And also, in each certain case, the quality evaluation methods for aluminosilicates should be different. This study is focused on chemical reactivity assessment method of crystalline (mainly, nanocrystalline) low calcium aluminosilicates exposed to high-alkali media. The solubility degree in high-alkali media and compressive strength performance were evaluated in this study in order to define chemical reactivity of low calcium aluminosilicates. The compressive strength data demonstrated a positive correlation with the crystallinity degree of aluminosilicates.


2013 ◽  
Vol 662 ◽  
pp. 331-334
Author(s):  
Huan Qi Zhao ◽  
Guo Zhong Li

Cement-based lightweight insulation materials were made. Cement and fly ash are main raw materials. The self-developed composite excitation agent and foaming agent are used. The method of foaming is the physical foaming. The inflection of fiber dosage on the performance of lightweight insulation materials was researched. Its influencing mechanism was discussed. Experiments show that foaming lightweight insulation materials were made with 1.22MPa bending strength, 2.95MPa compressive strength and the 0.072W/mk coefficient of thermal conductivity when the fiber mixing content is 1.2%.


2020 ◽  
Vol 992 ◽  
pp. 253-258
Author(s):  
M.P. Lebedev ◽  
V.N. Tagrov ◽  
E.S. Lukin

The article deals with the manufacture of modern structural ceramic materials from clay and loam deposits of the Republic of Sakha (Yakutia). The importance and relevance of the development of the production of building materials from local raw materials is emphasized, since this will certainly affect the effectiveness of the construction complex as a whole. The successful development of the construction complex is capable of not only stimulating growth in all sectors of the economy, but also contributes to solving the most pressing social problems. Today, Yakutia has huge reserves of mineral raw materials for the production of a wide range of building materials and products. Of practical interest are wall materials made from clay soils. Given the features of the region’s raw material base, this work focuses on additional processing of traditional material. Controlling the complex physicochemical and structural-mechanical transformations that occur during heat treatment, a methodology has been developed for creating a composite material that will allow competitive innovative materials with enhanced strength properties to be produced with a reinforcing element with a glassy phase matrix of mullite crystals. The fabricated samples have a wide range of physical and mechanical properties and allow using it as a high-quality structural building ceramics, as well as industrial floor technical tile.


Sign in / Sign up

Export Citation Format

Share Document