scholarly journals A study of the length parameter and the longitudinal compressive forces in the determination of frequencies of free vibrations of thin-walled underground pipelines of large diameter

2019 ◽  
Vol 6 (3) ◽  
Author(s):  
Andrey Dmitriev ◽  
Vladimir Sokolov ◽  
Aleksey Bereznev

Earlier work on the study of frequency characteristics of thin-walled underground pipeline to obtain an equation for finding the natural frequencies of the straight sections of the pipeline, taking into account the parameter of the longitudinal force, the magnitude of internal pressure, coefficient of elastic resistance of the soil, the option of thin tubing and added mass of the soil. In this article, using the obtained equation, we study the influence of the length of the section of the pipeline laid in the soil with different physical-mechanical characteristics, and the effect of the parameter of the longitudinal compressive forces at the frequency of free oscillations of thin-walled straight pipeline under the action of various internal working pressure for pipes of different diameters with different wall thicknesses. On the basis of the design data defined in the derived formulae, is determined by the criterion of application of shell theory or the core theory for finding the natural frequencies of thin-walled underground pipelines of large diameter, depending on the length of the element. Simultaneously, the obtained expression allows to determine the critical force at which buckling occurs in the core of the theory («beam buckling»), as well as the formula to determine the critical force, from which buckling occurs by shell theory (flattening of the cross section). Based on these data, it is concluded that flattening the cross section of the pipeline will occur when the force is at times less than required for the formation of «arch release», and consequently to ensure the reliability of underground thin-walled large diameter pipeline should be the first thing to check for resistance on the shell theory.

2019 ◽  
Vol 278 ◽  
pp. 03005
Author(s):  
Lei Zhang ◽  
Weidong Zhu ◽  
Aimin Ji ◽  
Liping Peng

In this paper, a new approach to identify cross-section deformation modes is presented and utilized in the establishment of a high-order beam model for dynamic analyses of thin-walled structures. Towards this end, a systematic procedure to extract cross-section in-plane vibration shapes for a thin-walled cross-section is developed based on elastic plate/shell theory. Then the distortion shapes are separated from vibration shapes by removing the components of classic modes involved with the minimum value problem of 2-norm. Sequentially, curve fitting method is utilized to approximate the distortion shape functions along the cross-section midline. It should be noticed that these distortion modes are arranged in hierarchy consistent with the order that they are identified and the number of distortions to be identified depends on the required model precision. Based on this, Hamilton's principle is applied to formulate the dynamic governing equations of the beam by constructing its displacement field with the linear superposition of the cross-section mode shapes including distortions. Numerical examples are also presented to validate the new approach and to demonstrate its efficiency in the reproduction of three-dimensional behaviours of thin-walled structures in dynamic analyses.


2019 ◽  
Vol 14 (2) ◽  
pp. 138-141
Author(s):  
I.M. Utyashev

Variable cross-section rods are used in many parts and mechanisms. For example, conical rods are widely used in percussion mechanisms. The strength of such parts directly depends on the natural frequencies of longitudinal vibrations. The paper presents a method that allows numerically finding the natural frequencies of longitudinal vibrations of an elastic rod with a variable cross section. This method is based on representing the cross-sectional area as an exponential function of a polynomial of degree n. Based on this idea, it was possible to formulate the Sturm-Liouville problem with boundary conditions of the third kind. The linearly independent functions of the general solution have the form of a power series in the variables x and λ, as a result of which the order of the characteristic equation depends on the choice of the number of terms in the series. The presented approach differs from the works of other authors both in the formulation and in the solution method. In the work, a rod with a rigidly fixed left end is considered, fixing on the right end can be either free, or elastic or rigid. The first three natural frequencies for various cross-sectional profiles are given. From the analysis of the numerical results it follows that in a rigidly fixed rod with thinning in the middle part, the first natural frequency is noticeably higher than that of a conical rod. It is shown that with an increase in the rigidity of fixation at the right end, the natural frequencies increase for all cross section profiles. The results of the study can be used to solve inverse problems of restoring the cross-sectional profile from a finite set of natural frequencies.


1981 ◽  
Vol 48 (1) ◽  
pp. 169-173 ◽  
Author(s):  
S. Narayanan ◽  
J. P. Verma ◽  
A. K. Mallik

Free-vibration characteristics of a thin-walled, open cross-section beam, with unconstrained damping layers at the flanges, are investigated. Both uncoupled transverse vibration and the coupled bending-torsion oscillations, of a beam of a top-hat section, are considered. Numerical results are presented for natural frequencies and modal loss factors of simply supported and clamped-clamped beams.


2016 ◽  
Vol 12 (3) ◽  
pp. 558-576 ◽  
Author(s):  
Aníbal J.J. Valido ◽  
João Barradas Cardoso

Purpose The purpose of this paper is to present a design sensitivity analysis continuum formulation for the cross-section properties of thin-walled laminated composite beams. These properties are expressed as integrals based on the cross-section geometry, on the warping functions for torsion, on shear bending and shear warping, and on the individual stiffness of the laminates constituting the cross-section. Design/methodology/approach In order to determine its properties, the cross-section geometry is modeled by quadratic isoparametric finite elements. For design sensitivity calculations, the cross-section is modeled throughout design elements to which the element sensitivity equations correspond. Geometrically, the design elements may coincide with the laminates that constitute the cross-section. Findings The developed formulation is based on the concept of adjoint system, which suffers a specific adjoint warping for each of the properties depending on warping. The lamina orientation and the laminate thickness are selected as design variables. Originality/value The developed formulation can be applied in a unified way to open, closed or hybrid cross-sections.


2016 ◽  
Vol 62 (2) ◽  
pp. 229-264 ◽  
Author(s):  
A. Szychowski

Abstract Thin-walled bars currently applied in metal construction engineering belong to a group of members, the cross-section res i stance of which is affected by the phenomena of local or distortional stability loss. This results from the fact that the cross-section of such a bar consists of slender-plate elements. The study presents the method of calculating the resistance of the cross-section susceptible to local buckling which is based on the loss of stability of the weakest plate (wall). The “Critical Plate” (CP) was identified by comparing critical stress in cross-section component plates under a given stress condition. Then, the CP showing the lowest critical stress was modelled, depending on boundary conditions, as an internal or cantilever element elastically restrained in the restraining plate (RP). Longitudinal stress distribution was accounted for by means of a constant, linear or non-linear (acc. the second degree parabola) function. For the critical buckling stress, as calculated above, the local critical resistance of the cross-section was determined, which sets a limit on the validity of the Vlasov theory. In order to determine the design ultimate resistance of the cross-section, the effective width theory was applied, while taking into consideration the assumptions specified in the study. The application of the Critical Plate Method (CPM) was presented in the examples. Analytical calculation results were compared with selected experimental findings. It was demonstrated that taking into consideration the CP elastic restraint and longitudinal stress variation results in a more accurate representation of thin-walled element behaviour in the engineering computational model.


1993 ◽  
Vol 115 (4A) ◽  
pp. 432-440 ◽  
Author(s):  
C. Ribreau ◽  
S. Naili ◽  
M. Bonis ◽  
A. Langlet

The topic of this study concerns principally representative models of some elliptical thin-walled anatomic vessels and polymeric tubes under uniform negative transmural pressure p (internal pressure minus external pressure). The ellipse’s ellipticity ko, defined as the major-to-minor axis ratio, varies from 1 up to 10. As p decreases from zero, at first the cross-section becomes somewhat oval, then the opposite sides touch in one point at the first-contact pressure pc. If p is lowered beneath pc, the curvature of the cross-section at the point of contact decreases until it becomes zero at the osculation pressure or the first line-contact pressure p1. For p<p1, the contact occurs along a straight-line segment, the length of which increases as p decreases. The pressures pc and p1 are determined numerically for various values of the wall thickness of the tubes. The nature of contact is especially described. The solution of the related nonlinear, two-boundary-values problem is compared with previous experimental results which give the luminal cross-sectional area (from two tubes), and the area of the mid-cross-section (from a third tube).


Author(s):  
D Xing ◽  
W Chen ◽  
J Ma ◽  
L Zhao

In nature, bamboo develops an excellent structure to bear nature forces, and it is very helpful for designing thin-walled cylindrical shells with high load-bearing efficiency. In this article, the cross-section of bamboo is investigated, and the feature of the gradual distribution of vascular bundles in bamboo cross-section is outlined. Based on that, a structural bionic design for thin-walled cylindrical shells is presented, of which the manufacturability is also taken into consideration. The comparison between the bionic thin-walled cylindrical shell and a simple hollow one with the same weight showed that the load-bearing efficiency was improved by 44.7 per cent.


Author(s):  
Ranil Banneyake ◽  
Ayman Eltaher ◽  
Paul Jukes

Ovalization of the cross-section of bends under in-plane bending (a.k.a. Brazier effect) is a known phenomenon caused by the longitudinal stress acting on the cross-section as the pipe bends. Besides its tendency to induce stresses in the bend above what is predicted using simple beam theory, excessive cross-section ovalization is particularly critical to subsea pipes, as it can lead to collapse of the pipe under external pressure. Also, being in a plastic regime may cause the bend material to ratchet and undergo excessive strains under cyclic operational loads, especially under high-pressure high-temperature (HPHT) conditions. Ovalization normally results in local increase of stresses and could lead to failure of the bend before the bend globally reaches its limiting capacity. The offshore industry standards and design codes address the impact of initial ovality in straight pipes, but their applicability to bends is not clear. Therefore, this paper presents an investigation into the increased tendency of thin-walled bends to ovalize, and the effect of bend cross-section ovalization on their stiffness and yielding and collapse limit states, with emphasis on offshore applications. Due to the lack of analytical solutions for the bend response taking into account cross-section ovalization, finite element analysis (FEA) is used in this study. Predictions of the bend models are compared with those of straight pipe models and predictions of models of the bend made of beam elements (with pipe section) are compared with those of models made of brick /shell elements. The increased tendency of thin-walled bends to ovalize compared to straight pipes is investigated (e.g. 100 times in the linear range), and the impact and significance of ovalization in bends are assessed (e.g., stress increase of the order of 35% has been observed in some example situations). Also discussed in the paper is the selection of proper element specifications in order to accurately capture the ovalization response while keeping the computational cost manageable. Recommendations as to how to account for ovalization effects are presented. This paper helps to gain a better understanding of the response of subsea thin-walled bends under in-plane bending and their comparatively high tendency to ovalize compared to straight pipe, and emphasizes the significance of local effects such as cross-section ovalization, the overlooking of which may result in a significant underestimation of involved stresses and strains.


10.14311/750 ◽  
2005 ◽  
Vol 45 (4) ◽  
Author(s):  
V. Zanic ◽  
P. Prebeg

A concept design methodology for monotonous, tapered thin-walled structures (wing/fuselage/ship/bridge) is presented including modules for: model generation; loads; primary (longitudinal) and secondary (transverse) strength calculations; structural feasibility (buckling/fatigue/ultimate strength criteria); design optimization modules based on ES/GA/FFE; graphics. A method for primary strength calculation is presented in detail. It provides the dominant response field for design feasibility assessment. Bending and torsion of the structure are modelled with the accuracy required for concept design. A ‘2.5D-FEM’ model is developed by coupling a 1D-FEM model along the ‘monotonity’ axis and a 2D-FEM model(s) transverse to it. The shear flow and stiffness characteristics of the cross-section for bending and pure/restrained torsion are given, based upon the warping field of the cross-section. Examples: aircraft wing and ship hull. 


2021 ◽  
Author(s):  
Pilar Clariana ◽  
Ruth Soto ◽  
Conxi Ayala ◽  
Aina Margalef ◽  
Antonio Casas-Sainz ◽  
...  

&lt;p&gt;The characterization of the basement architecture of the Pyrenean Axial Zone, backbone of the chain, is crucial to understand its geodynamic evolution and the interplay between tectonism and magmatism. In this work, a new gravity-constrained cross section was built along the Central Pyrenees, between two of the largest Pyrenean Late Variscan granitic complexes, La Maladeta and Andorra-Mont Louis granites, to infer the geometry at depth of the basement host rocks. This cross section is ca. 65 km long and extends from the Mesozoic B&amp;#243;ixols basin in the South to the Late Variscan Bassi&amp;#232;s granite to the North, close to the northern end of the Axial Zone. It is based on available geological maps, previous published works and new geological field data; together with newly acquired gravimetric stations (1141), to improve the existent spatial resolution of the gravity data from the databases of the Spanish and Catalan Geological Surveys, and density values from 65 rock samples covering all different lithologies in the cross section. Thus, its geometry at depth is constrained by means of an integrated 2.5D gravity/structural/petrophysical modelling.&lt;/p&gt;&lt;p&gt;The La Maladeta and Andorra-Mont Louis granites appear aligned in a WNW-ESE direction and both lie within the same Alpine basement unit, the Orri thrust sheet. They are separated about 40 km by the WNW-ESE-oriented Llavors&amp;#237; syncline, formed by Devonian and Silurian rocks and limited to the north and south by south vergent thrusts. This syncline is located between two large Cambro-Ordovician anticlinorium structures, the La Pallaresa and Orri massifs to the north and south respectively, formed by a monotonous alternation of shales and sandstones with some intercalations of limestones and conglomerates affected by very low to medium grade of metamorphism. Most structures show southern vergence along the cross section, and its southern part is characterized by the occurrence of Triassic evaporites, a significant detachment level decoupling deformation between the Paleozoic basement and the Mesozoic-Cenozoic cover rocks.&lt;/p&gt;&lt;p&gt;The observed residual anomaly along the cross section shows a relative maximum, coinciding with the southern edge of the Axial Zone (Nogueras Zone) and southern half of the Orri massif, followed to the north by a relative large minimum. This gravity minimum in the core of the Axial Zone coincides with the northern half of the Orri massif, the Llavors&amp;#237; syncline and southern half of the La Pallaresa massif and must be related at depth with rocks of lower density with respect to rocks located to the North and South. Two possible solutions have been postulated to explain the presence of lower density rocks: (i) the presence of Triassic evaporites at depth as a continuation to the North of the Triassic evaporites outcropping in the Rialp window located to the South and/or (ii) the presence of buried granitic bodies equivalent to the adjacent La Maladeta and Andorra-Mont Louis granites.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document