scholarly journals Compaction as a sustainable alternative to dried sludge from poultry slaughterhouse wastewater for energy generation

2021 ◽  
Vol 51 (12) ◽  
Author(s):  
Julio Peretti da Silva ◽  
Martha Andreia Brand ◽  
Philipe Ricardo Casemiro Soares ◽  
Matheus de Liz Salamon ◽  
Taíse Mariano Rodrigues ◽  
...  

ABSTRACT: The generation of wastes in poultry abattoirs has increased considerably in recent years due to the growing demand for chicken meat. This fact, combined with the current need for developing new forms of renewable energy from biomass, and the lack of disposal facilities, motivated this study. We determined the technical feasibility of the barbecue charcoal production using briquettes produced with different blends containing sludge from a poultry abattoir and Pinus spp. shavings. To that end, we have mixed both residues by gradually adding 10 to 90 % of sludge in the blends, which resulted in 9 treatments containing sludge, and 1 containing only shavings. After that, we produced four briquettes of each treatment and charred them by using a heating ramp. After charring, we submitted the charcoal to the analyzes of Moisture Content (MC), Bulk Density (BD), Compressive Resistance (CR), Gross Calorific Value (GCV), and Proximate Analysis (PA). We calculated the Gravimetric Yield (GY) and the Energy Density (ED) by using the results from the other analyzes. Results showed that the CR, the GCV, the Volatile Matter (VM), and the Fixed Carbon Content (FC) of the charcoals decreased by increasing the proportion of sludge in the blends. However, the charcoals’ bulk density (BD) increased, which also increased its energy density (ED) and ash content (AC). The best blend to produce charcoal for household use was the one containing 90 % of sludge and 10 % of Pinus spp. shavings.

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5504 ◽  
Author(s):  
Carrillo Parra Artemio ◽  
Ngangyo Heya Maginot ◽  
Colín-Urieta Serafín ◽  
Foroughbakhch Pournavab Rahim ◽  
Rutiaga Quiñones José Guadalupe ◽  
...  

Background The need for energy sources with low greenhouse gas emissions and sustainable production encourages the search for alternative biomass sources. However, the use of biomass fuels faces the problem of storage, transport and lower energy densities. Low-density values can negatively affect energy density, leading to an increase in transportation and storage costs. Use of pellets as alternative biomass source is a way to reduce the volume of biomass by densification, which improves their energy quality. They are produced by diverse biomass resources and mainly from wood materials. In all cases, it is important to evaluate the fuel characteristics, to determine their suitability on the heating system and handling properties. Methods The present study determines and compares data from proximate analysis, calorific values, physical and mechanical properties of wood pellets produced from the common tropical species Acacia wrightii, Ebenopsis ebano and Havardia pallens. Data were obtained from pellets produced from each species chips collected from an experimental plantation and analyzed through ANOVA and Kruskal–Wallis test at 0.05 significance level. Results The results of diameter, length and length/diameter ratio didn’t show statistical differences (p > 0.05) among species. Acacia wrightii showed the highest density (1.2 g/cm3). Values on weight retained and compression test showed statistical differences (p = 0.05) among species. Havardia pallens was more resistant to compression strength than A. wrightii and Ebenopsis ebano. Statistical differences (p < 0.01) were also observed for the volatile matter and calorific value. E. ebano has the lowest volatile matter (72%), highest calorific value (19.6 MJ/kg) as well as the fixed carbon (21%). Discussion The pellets of the species studied have a high energy density, which makes them suitable for both commercial and industrial heating applications.A pellet with low compression resistance tends to disintegrate easily, due to moisture adsorption. The percentages obtained for the resistance index were higher than 97.5%, showing that the pellets studied are high-quality biofuels. Proximate analysis values also indicate good combustion parameters. Pellets of Acacia wrightii and Ebenopsis ebano are the more favorable raw material sources for energy purposes because of their high density, calorific value, low ash content and they also met majority of the international quality parameters.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 2249-2263
Author(s):  
María Alejandra Ramírez-Ramírez ◽  
Artemio Carrillo-Parra ◽  
Faustino Ruíz-Aquino ◽  
Luis Fernando Pintor-Ibarra ◽  
Nicolás González-Ortega ◽  
...  

This research characterized briquettes made with Pinus spp. sawdust without the use of additives. For this purpose, 19 samples of sawdust from different wood industries located in five states of the Mexican Republic were used. The densification process was carried out in a vertical hydraulic piston laboratory briquette machine. The briquettes were made with 40 g of sawdust, at 50 °C, 20 kPa and pressing for 5 min. The results obtained varied as follows: moisture content (4.1% to 7.2%), density (813.9 to 1,014.4 kg/m3), volumetric expansion (7.4% to 37.3%), compressive strength (4.9 to 40.8 N/mm), impact resistance index (46.7% to 200%), ash (0.1% to 1.1%), volatile matter (82.9% to 90.7%), fixed carbon (8.9% to 16.4%), and calorific value (20.5 to 22.8 MJ/kg). The density of the briquettes was within the “acceptable” classification (800 to 1,200 kg/m3). It was observed that, the higher the density, the lower the volumetric expansion, the higher the compressive strength, and the higher the impact resistance index. According to the ash content, the briquettes could achieve international quality. Due to high volatile matter values, rapid combustion of the briquettes with little generation of toxic smoke would be expected. Fixed carbon and calorific value results were acceptable.


2020 ◽  
Vol 190 ◽  
pp. 00030
Author(s):  
Qurrotin Ayunina Maulida Okta Arifianti ◽  
Azmi Alvian Gabriel ◽  
Syarif Hidayatulloh ◽  
Kuntum Khoiro Ummatin

The current research aimed to increase the calorific value of woody cutting waste briquette with paper waste pulp as binder. There were three different binder variation used in this study, they are 5 %, 10 %, and 15 %. To create a briquette, a cylindrical iron mold with diameter of 3.5 cm and height of 3 cm and a hydraulic press with 2 t power were applied. The physical characteristics of the combination woody waste briquette and paper waste pulp, such as moisture content, ash content, volatile matter and carbon fix were examined using proximate analysis. The calorific value of briquetted fuel was tested by bomb calorimeter. The combustion test was performed to determine the combustion characteristic of briquettes, for example initial ignition time, temperature distribution, and combustion process duration. The general result shows that the calorific value of briquette stood in the range of 4 876 kCal kg–1 to 4 993 kCal kg–1. The maximum moisture content of briquette was 5.32 %. The longest burning time was 105 min.


2015 ◽  
Vol 10 (1) ◽  
pp. 343-349 ◽  
Author(s):  
Dobariya Umesh ◽  
P Sarsavadiya ◽  
Krishna Vaja ◽  
Khardiwar Mahadeo

The study was undertaken to investigate the properties of cotton stalk fuel from the agricultural residues. The whole cotton stalk plant is converted into shredded material with the help of cotton stalk shredder. The capacity of cotton stalk shredder machine is 218 kg/h. The proximate analysis of the shredded cotton stalk in terms of bulk density 34.92 kg / m3 moisture content 13.63 %, volatile matter 74.52 %, ash content (4.95 %, fixed carbon 20.53 % and calorific value of cotton stalk biomass (3827 cal/g) respectively. were showed that agricultural residues are the most potential and their quantitative availability, Since the aim by using shredded cotton stalk as feed stock for energy conversion process of the developed gasifier.


2019 ◽  
Vol 2 (1) ◽  
pp. 65-68
Author(s):  
Rahman Farhan Aditya

Oil Palm growths in Indonesia are getting higher every year. Oil palm plantationproduced various waste, including oil palm empty fruit bunches (OP-EFB). 95 % Indonesia energy demand still provided by the fossil fuel and only 5 % provided by renewable energy, which provide opportunity of OP-EFB biomass pellets to be utilized as alternative resource. The research of biomass still low, especially research of OP-EFB biomass pellets. Therefore, the research objectives were to determine the production process of OP-EFB and to define the most effective binder and binder ratio for the biomass pellets. This research experiments  consist of shredding, chopping, drying, grinding, and sieving as raw material pretreatment. Also, varying the binder and binder concentration of the mixture between raw materials was the part of this thesis research. The binders used in this thesis research are PVAC paste and tapioca based paste with 4 variations of concentration. The analyses of the biomass pellets characteristic are density,compressive strength, proximate analysis (moisture, ash, volatile matter, and fixed carbon), calorific value, combustion rate, and gas chromatographic & mass spectroscopy (GCMS). The result shows that OP-EFB biomass pellets are qualified to be considered as biomass pellets. The most effective OP-EFB biomass pellets is biomass pellets with 10% tapioca binder concentration.


Three coal samples from Onyeama (Enugu State), Owukpa (Benue State) and Odagbo (Kogi State) in Nigeria were collected and tested. These were characterized to determine the proximate and the ultimate analyses, calorific value and the thermogravimetric analysis, and their combustion efficiencies for power generation comparatively analyzed. The proximate analysis and the calorific value tests were done at the Energy Research Center, University of Nigeria – Nsukka, while the ultimate analysis test was conducted at the National Geosciences Research Laboratory, Kaduna. Also, the thermogravimetric analysis was carried out at the Energy Research Center, Usman Danfodio University, Sokoto. From the test results, the moisture contents ranged from 10.60 to 16.80%. The Owukpa coal sample had the highest moisture content of 16.80%, followed by Odagbo with 15.95% and Onyeama bearing 10.60%. The volatile matter contents of the samples indicated that Owukpa had the highest value of 19.95%, followed by Onyeama with 18.65% and Odagbo having the least value of 18.58% respectively. Similarly, the Owukpa coal sample had the highest fixed carbon of 55.22% followed by Onyeama with 53.36% and Odagbo with the lowest value of 50.38%, while the ash contents showed Onyeama to possess the highest value of 17.39%, and closely followed by Odagbo with 15.06% and Owukpa having the lowest content of 8.03%. Moreso, Onyeama coal sample with the highest fuel ratio of 2.86 would give the best ease of ignition and fuel burnout followed by Owukpa (2.77), and Odagbo (2.71). The percentages of the elemental carbon of Onyeama, Owukpa and Odagbo coal samples were 52.2170, 53.8178 and 50.8754% respectively, while the hydrogen contents indicated Onyeama (4.7236%), Owukpa (4.0141%) and Odagbo (3.8163%). The nitrogen, sulphur and oxygen contents obtained revealed Onyeama (1.3756, 0.10 and 13.6938%), Owukpa (1.4350, 0.10 and 15.9031%) and Odagbo (1.4260, 0.92 and 12.8423%) respectively. Consequently, the Onyeama coal sample had the highest heating value of 32.916MJ/kg, followed by Odagbo (32.037MJ/kg) and Owukpa (30.062MJ/kg). Based on the comparative analyses, the Onyeama coal indicated the overall best fuel sample followed by Owukpa and then Odagbo in that order in-view of their fuel ratio, combustion efficiencies, quality of the fuel, ease of ignition and fuel burnout.


2021 ◽  
Vol 21 (1) ◽  
pp. 83
Author(s):  
Fredy Surahmanto ◽  
Didik Nurhadiyanto ◽  
Mujiyono Mujiyono ◽  
Chinnathan Areeprasert ◽  
Mochamad Syamsiro

Hydrothermal processing is appraised as one of  advanced technologies for wet solid waste handling. In this study, herb residue was subjected to hydrothermal treatment. Calorific value, yield, and also proximate analysis of obtained hydro-char were investigated. A cylindrical reactor with an internal volume of 2.5 Litres made of stainless steel and a low-tech component was used in the experiment. The reactor was equipped with a stirrer to ensure heat transfer took place through the entire parts of the solid-water mixture. Solid products were dried by a microwave oven before analysis. The results show that the final temperature, holding time, and solid-water ratio have various effects on the hydro-char yield, calorific value, and proximate analysis of the hydrothermal products. The hydro-char yield decreased with the increase in final temperature and holding time. Meanwhile, the highest hydro-char yield was obtained at the solid-water ratio of ¼. The hydro-char calorific value increased with the increase in final temperature, holding time, and solid-water ratio. The rise in final temperature, holding time, and solid-water ratio resulted in  a lower moisture content and volatile matter but higher fixed carbon. Meanwhile, the ash content increased with the solid-to-water ratio.


2015 ◽  
Vol 12 (4) ◽  
pp. 347-352 ◽  
Author(s):  
R. Arul Kumar ◽  
H. Kanaga Sabapathy ◽  
I. Neethimanickam

The present study deals with determination of physical, mechanical and combustion characteristics like mass, density, compressive strength, shearing strength, moisture content, total ash content, fixed carbon, volatile matter, gross calorific value of Sawdust briquette. Briquette quality is evaluated mainly by briquette density. Briquette density is very important from the viewpoint of manipulation, burning speed, briquette durability, etc. During our research, theoretical analyses of parameters which have an impact on briquette quality were conducted. The sawdust sample produced using super-70 piston press machine. The compression test and shear test were conducted for three sawdust sample using compression testing machine. For quality and durability evaluation of the manufactured briquette the density and strength properties were determined. To determine the calorific value and proximate analysis of the briquette using the tests carried out in the lab.


2021 ◽  
Vol 921 (1) ◽  
pp. 012055
Author(s):  
R Rahman ◽  
B Azikin ◽  
D Tahir ◽  
S Widodo

Abstract This study using three types of coal from East Kalimantan and South Sulawesi Mangrove Wood Charcoal which consisted of various compositions. In sample analysis using analysis, namely: proximate, ultimate, and calorific value. Proximate analysis: ash content, volatile matter, moisture content, fixed carbon; ultimate analysis: carbon and sulfur content and the calorific value using the bomb calorimeter method. The results of the proximate analysis showed that the fixed carbon content was obtained in the mixture of MWC 75% + KJA 25% = 52.45%, while the lowest was obtained at IC 100% = 32.86%; The highest volatile matter was obtained at KJA 100% = 44.23%, the lowest was at MWC 75% + KJA 25% = 31.90%, the highest ash content was IC 100% = 9.14% the lowest was at MWC 75% + KJA 25% = 5.94% and the highest moisture content was seen at IC 100% = 15.17% but MWC 75% + IC 25% = 9.52%. The results of the ultimate analysis showed that the lowest sulfur content was in the mixed variation of MWC 75% + KJA 25% = 0.168%, while the highest sulfur content was obtained at IC 100% = 0.874%. However, it was still in the low sulfur category <1. The highest calorific value is obtained by varying the composition at MWC 75% + IC 25% = 5919 cal/gram, while the lowest was obtained at KJA 100% = 4913 cal/gram. So based on this research, the addition of mangrove charcoal is very good for increasing the calorific value.


2018 ◽  
Vol 5 (1) ◽  
pp. 7-10
Author(s):  
Nazia Hossain ◽  
Rafidah Jalil

Various types of plants with several energy analysis methods have been experimented to produce bio-energy. In this study, two Malaysian local plants Sentang (Azadirachta excelsa) and Sesendok (Endospermum malaccense) have been used to determine their capability of bio-energy production. Our study focused on the analyses of bio-energy properties by using proximate analysis method separating moisture content (%), volatile matter (%), ash content (%), fixed carbon (%) and calorific value (MJ/kg) from Sentang and Sesendok. Proximate analyses of these plants proved lengthy flammability, very high amount of ignition, heat generation, net energy and negligible pollution effect. The calorific values for Sentang and Sesendok are 16.84 MJ/kg and 16.95 MJ/kg respectively. As Malaysia is tropical country mapping a large area of land with an evergreen plantation, so both trees Sentang and Sesendok species would be the efficient sources of bio-energy production.


Sign in / Sign up

Export Citation Format

Share Document