scholarly journals Detection of antimicrobial resistance genes of carbapenem-resistant Enterobacteriaceae in Escherichia coli isolated from the water supply of smallholder dairy farms in Saraburi and Maha Sarakham, Thailand

2020 ◽  
Vol 6 (1) ◽  
pp. 1-5
Author(s):  
Natapol Pumipuntu ◽  
Sangkom Pumipuntu

Background and Aim: The problem of antimicrobial resistance of bacteria in both humans and animals is an important public health concern globally, which is likely to increase, including in Thailand, where carbapenem-resistant Enterobacteriaceae (CRE), such as Escherichia coli, are of particular concern. They are pathogens found in the gastrointestinal tract of humans and other animals as well as in the environment. They may cause opportunistic infection and are often resistant to antibiotics in various fields especially in animal husbandry, such as pets or livestock farms. This study aimed to investigate the occurrence of carbapenem-resistant E. coli from water samples of smallholder dairy farms in Saraburi and Maha Sarakham, Thailand. Materials and Methods: Sixty-four water samples were collected from 32 dairy farms in Kaeng Khoi district, Muak Lek district, and Wang Muang district of Saraburi Province, and Kantharawichai district and Mueang district of Maha Sarakham Province, Thailand. All samples were cultured and isolated for E. coli by biochemical tests. All E. coli isolates were tested for drug susceptibility using imipenem, meropenem, and drug resistance genes of carbapenemases such as blaNDM, blaIMP, and blaOXA48 of drug-resistant E. coli isolates detected by polymerase chain reaction (PCR) technique. Results: A total of 182 E. coli isolates were found (140 and 42 isolates from Saraburi and Maha Sarakham, respectively). Drug sensitivity tests found that two isolates of E. coli from water in Kaeng Khoi were resistant to imipenem; therefore, the incidence of E. coli resistance to carbapenem was 1.43% of Saraburi Province. On the other hand, there was no incidence of drug-resistant E. coli in Maha Sarakham. In addition, the detection of the drug-resistant gene of E. coli in both isolates by PCR showed the expression of blaNDM. Conclusion: This study reports E. coli resistance to antimicrobial drugs on livestock farms. It can be considered to be the first report of E. coli CRE detection in a dairy farm at Saraburi, which should be the subject of further extended study.

2019 ◽  
Author(s):  
Liseth Salinas ◽  
Paúl Cárdenas ◽  
Timothy J. Johnson ◽  
Karla Vasco ◽  
Jay Graham ◽  
...  

ABSTRACTThe increased prevalence of antimicrobial resistance (AMR) among Enterobacteriaceae has had major clinical and economic impacts in human medicine. Many of the multi-drug resistant (MDR) Enterobacteriaceae found in humans are community-acquired and linked to food animals (i.e. livestock raised for meat and dairy products). In this study, we examined whether numerically dominant, commensal Escherichia coli strains from humans (n=63 isolates) and domestic animals (n=174 isolates) in the same community and with matching phenotypic AMR patterns, were clonally related or shared the same plasmids. We identified 25 multi-drug resistant isolates (i.e. resistant to 3 or more antimicrobial classes) that shared identical phenotypic resistance patterns. We then investigated the diversity of E. coli clones, AMR genes and plasmids carrying the AMR genes using conjugation, replicon typing and whole genome sequencing. None of the MDR E. coli isolates (from children and domestic animals) analyzed were clonal. While the majority of isolates shared the same antimicrobial resistance genes and replicons, DNA sequencing indicated that these genes and replicons were found on different plasmid structures. Our findings suggest that nonclonal resistance gene dissemination is common in this community and that diverse plasmids carrying AMR genes presents a significant challenge for understanding the movement of AMR in a community.IMPORTANCEEven though Escherichia coli strains may share nearly identical AMR profiles, AMR genes, and overlap in space and time, the diversity of clones and plasmids challenges to research that aims to identify sources of AMR. Horizontal gene transfer appears to play a much larger role than clonal expansion in the spread of AMR in the community.


Author(s):  
Juan Martín Talavera-Gonzalez ◽  
Martin Talavera-Rojas ◽  
Edgardo Soriano-Vargas ◽  
JESUS VAZQUEZ-NAVARRETE ◽  
Celene Salgado-Miranda

The transmission of multi-drug resistant pathogens and antimicrobial-resistant genes is an arising problem with multiple factors involved (humans, domestic animals, wildlife). The aim of this study was to investigate the presence of Escherichia coli isolates with different antimicrobial resistance genes from backyard poultry and demonstrate the in vitro transduction phenomenon of these genes between phages from migratory wild-birds and poultry E. coli isolates. We collected 197 E. coli isolates from chicken, turkeys, and ducks in backyard production units (northern region of the State of Mexico). Isolates were resistant to ampicillin (80.7%), tetracycline (64.4%), carbenicillin (56.3%), and nalidixic acid and trimethoprim-sulfamethoxazole (both, 26.9%). Moreover, blaTEM (56.3%), tetB (20.8%), tetA (19.2%), sulI (7.6%), sulII (10.1%), qnrA (9.6%) and qnrB (5.5%) genes were found. In vitro transduction using phages from migratory wild birds sampled in the wetland Chimaliapan (State of Mexico) was worked out. It was possible to transduce qnrA, tetB, blaTEM and sulII genes to E. coli isolates from poultry. This is the first report that describes the transduction of antimicrobial resistance genes from phages of migratory wild birds to poultry and suggests the possible transmission in backyard production units.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3431 ◽  
Author(s):  
Woranich Hinthong ◽  
Natapol Pumipuntu ◽  
Sirijan Santajit ◽  
Suphang Kulpeanprasit ◽  
Shutipen Buranasinsup ◽  
...  

Subclinical mastitis is a persistent problem in dairy farms worldwide. Environmental Escherichia coli is the bacterium predominantly responsible for this condition. In Thailand, subclinical mastitis in dairy cows is usually treated with various antibiotics, which could lead to antibiotic resistance in bacteria. E. coli is also a reservoir of many antibiotic resistance genes, which can be conveyed to other bacteria. In this study, the presence of E. coli in milk and water samples was reported, among which enteropathogenic E. coli was predominant, followed by enteroaggregative E. coli and enterohemorrhagic E. coli, which was found only in milk samples. Twenty-one patterns of antibiotic resistance were identified in this study. Ampicillin- and carbenicillin-resistant E. coli was the most common among the bacterial isolates from water samples. Meanwhile, resistance to ampicillin, carbenicillin, and sulfamethoxazole-trimethoprim was the pattern found most commonly in the E. coli from milk samples. Notably, only the E. coli from water samples possessed ESBL phenotype and carried antibiotic resistance genes, blaTEM and blaCMY-2. This indicates that pathogenic E. coli in dairy farms is also exposed to antibiotics and could potentially transfer these genes to other pathogenic bacteria under certain conditions.


2019 ◽  
Author(s):  
Jingzhi Yuan ◽  
Xiaoye Wang ◽  
Dali Shi ◽  
Qiang Ge ◽  
Xingxing Song ◽  
...  

Abstract Background The discovery of mcr-1-positive Escherichia coli (MCRPEC), a notable superbug, attracted great attention worldwide. Swine-origin multi-drug resistance MCRPEC is a potential threat to public health and safety. To date, few detailed studies regarding swine-origin MCRPEC in Guangxi, South China, have been reported. Results In this study, thirty-three MCRPEC harbored mcr-1 genes were identified from 142 E. coli strains isolated from swine droppings and entrails in Guangxi in 2018. All MCRPEC isolates were assigned to 8 unique STs, including ST10, ST224 and ST410, which overlapped with the human-origin MCRPEC. Additionally, a total of six plasmid replicon types (IncFI, IncHI1, IncY, IncN, IncI1 and IncX1) were found. Moreover, the drug susceptibility of the MCRPEC isolates was tested with 27 antimicrobial agents belonging to 17 antimicrobial categories that are usually used in hospitals. There were 19 extended spectrum beta lactamase (ESBL) E. coli and 12 carbapenem resistant E. coli among the 33 MCRPEC strains. Importantly, the MCRPEC showed a high rate of resistance against two broad-spectrum carbapenem antibiotics, imipenem and meropenem, which are forbidden in livestock production use. Three MCRPEC strains were further identified to be extensively drug-resistant (XDR), and other isolates were recognized as multi-drug-resistant (MDR). Meanwhile, to detect whether plasmid-carrying antimicrobial resistance genes coexisted with the mcr-1 gene in the MCRPEC isolates, a total of 22 plasmid-carrying antimicrobial resistance genes were tested for. The results showed that four ESBL genes and one pAmpC gene were identified. Eight of the MCRPEC isolates also contained the carbapenem gene blaNDM-5, which could cause untreatable infections. Moreover, ten non-lactamase genes were also detected. Conclusion This study indicated that swine-origin MCRPEC isolated in Guangxi seemed to have a high rate of resistance to both regular and final line of defense drugs as well as drug resistance genes, which pose a great threat to human public safety and health.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Pouya Reshadi ◽  
Fatemeh Heydari ◽  
Reza Ghanbarpour ◽  
Mahboube Bagheri ◽  
Maziar Jajarmi ◽  
...  

Abstract Background Transmission of antimicrobial resistant and virulent Escherichia coli (E. coli) from animal to human has been considered as a public health concern. This study aimed to determine the phylogenetic background and prevalence of diarrheagenic E. coli and antimicrobial resistance in healthy riding-horses in Iran. In this research, the genes related to six main pathotypes of E. coli were screened. Also, genotypic and phenotypic antimicrobial resistance against commonly used antibiotics were studied, then phylo-grouping was performed on all the isolates. Results Out of 65 analyzed isolates, 29.23 % (n = 19) were determined as STEC and 6.15 % (n = 4) as potential EPEC. The most prevalent antimicrobial resistance phenotypes were against amoxicillin/clavulanic acid (46.2 %) and ceftriaxone (38.5 %). blaTEM was the most detected resistance gene (98.4 %) among the isolates and 26.15 % of the E. coli isolates were determined as multi-drug resistant (MDR). Three phylo-types including B1 (76.92 %), A (13.85 %) and D (3.08 %) were detected among the isolates. Conclusions Due to the close interaction of horses and humans, these findings would place emphasis on the pathogenic and zoonotic potential of the equine strains and may help to design antimicrobial resistance stewardship programs to control the dissemination of virulent and multi-drug resistant E. coli strains in the community.


2020 ◽  
Author(s):  
B Constantinides ◽  
KK Chau ◽  
TP Quan ◽  
G Rodger ◽  
M Andersson ◽  
...  

ABSTRACTEscherichia coli and Klebsiella spp. are important human pathogens that cause a wide spectrum of clinical disease. In healthcare settings, sinks and other wastewater sites have been shown to be reservoirs of antimicrobial-resistant E. coli and Klebsiella spp., particularly in the context of outbreaks of resistant strains amongst patients. Without focusing exclusively on resistance markers or a clinical outbreak, we demonstrate that many hospital sink drains are abundantly and persistently colonised with diverse populations of E. coli, Klebsiella pneumoniae and Klebsiella oxytoca, including both antimicrobial-resistant and susceptible strains. Using whole genome sequencing (WGS) of 439 isolates, we show that environmental bacterial populations are largely structured by ward and sink, with only a handful of lineages, such as E. coli ST635, being widely distributed, suggesting different prevailing ecologies which may vary as a result of different inputs and selection pressures. WGS of 46 contemporaneous patient isolates identified one (2%; 95% CI 0.05-11%) E. coli urine infection-associated isolate with high similarity to a prior sink isolate, suggesting that sinks may contribute to up to 10% of infections caused by these organisms in patients on the ward over the same timeframe. Using metagenomics from 20 sink-timepoints, we show that sinks also harbour many clinically relevant antimicrobial resistance genes including blaCTX-M, blaSHV and mcr, and may act as niches for the exchange and amplification of these genes. Our study reinforces the potential role of sinks in contributing to Enterobacterales infection and antimicrobial resistance in hospital patients, something that could be amenable to intervention.IMPORTANCEEscherichia coli and Klebsiella spp. cause a wide range of bacterial infections, including bloodstream, urine and lung infections. Previous studies have shown that sink drains in hospitals may be part of transmission chains in outbreaks of antimicrobial-resistant E. coli and Klebsiella spp., leading to colonisation and clinical disease in patients. We show that even in non-outbreak settings, contamination of sink drains by these bacteria is common across hospital wards, and that many antimicrobial resistance genes can be found and potentially exchanged in these sink drain sites. Our findings demonstrate that the colonisation of handwashing sink drains by these bacteria in hospitals is likely contributing to some infections in patients, and that additional work is needed to further quantify this risk, and to consider appropriate mitigating interventions.


2014 ◽  
Vol 80 (12) ◽  
pp. 3656-3666 ◽  
Author(s):  
Basanta Kumar Biswal ◽  
Ramzi Khairallah ◽  
Kareem Bibi ◽  
Alberto Mazza ◽  
Ronald Gehr ◽  
...  

ABSTRACTWastewater discharges may increase the populations of pathogens, includingEscherichia coli, and of antimicrobial-resistant strains in receiving waters. This study investigated the impact of UV and peracetic acid (PAA) disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenicEscherichia coli(UPEC), the most abundantE. colipathotype in municipal wastewaters. Laboratory disinfection experiments were conducted on wastewater treated by physicochemical, activated sludge, or biofiltration processes; 1,766E. coliisolates were obtained for the evaluation. The target disinfection level was 200 CFU/100 ml, resulting in UV and PAA doses of 7 to 30 mJ/cm2and 0.9 to 2.0 mg/liter, respectively. The proportions of UPECs were reduced in all samples after disinfection, with an average reduction by UV of 55% (range, 22% to 80%) and by PAA of 52% (range, 11% to 100%). Analysis of urovirulence genes revealed that the decline in the UPEC populations was not associated with any particular virulence factor. A positive association was found between the occurrence of urovirulence and antimicrobial resistance genes (ARGs). However, the changes in the prevalence of ARGs in potential UPECs were different following disinfection, i.e., UV appears to have had no effect, while PAA significantly reduced the ARG levels. Thus, this study showed that both UV and PAA disinfections reduced the proportion of UPECs and that PAA disinfection also reduced the proportion of antimicrobial resistance gene-carrying UPEC pathotypes in municipal wastewaters.


2020 ◽  
Vol 64 (10) ◽  
Author(s):  
Po-Yu Liu ◽  
Yu-Lin Lee ◽  
Min-Chi Lu ◽  
Pei-Lan Shao ◽  
Po-Liang Lu ◽  
...  

ABSTRACT A multicenter collection of bacteremic isolates of Escherichia coli (n = 423), Klebsiella pneumoniae (n = 372), Pseudomonas aeruginosa (n = 300), and Acinetobacter baumannii complex (n = 199) was analyzed for susceptibility. Xpert Carba-R assay and sequencing for mcr genes were performed for carbapenem- or colistin-resistant isolates. Nineteen (67.8%) carbapenem-resistant K. pneumoniae (n = 28) and one (20%) carbapenem-resistant E. coli (n = 5) isolate harbored blaKPC (n = 17), blaOXA-48 (n = 2), and blaVIM (n = 1) genes.


2020 ◽  
Vol 7 ◽  
Author(s):  
David Ortega-Paredes ◽  
Sofía de Janon ◽  
Fernando Villavicencio ◽  
Katherine Jaramillo Ruales ◽  
Kenny De La Torre ◽  
...  

Antimicrobial resistance (AMR) is a major health threat for public and animal health in the twenty-first century. In Ecuador, antibiotics have been used by the poultry industry for decades resulting in the presence of multi-drug resistant (MDR) bacteria in the poultry meat production chain, with the consequent risk for public health. This study evaluated the prevalence of ESBL/AmpC and mcr genes in third-generation cephalosporin-resistant Escherichia coli (3GC-R E. coli) isolated from broiler farms (animal component), broiler carcasses (food component), and human enteritis (human component) in Quito-Ecuador. Samples were collected weekly from November 2017 to November 2018. For the animal, food, and human components, 133, 335, and 302 samples were analyzed, respectively. Profiles of antimicrobial resistance were analyzed by an automated microdilution system. Resistance genes were studied by PCR and Sanger sequencing. From all samples, 122 (91.7%), 258 (77%), and 146 (48.3%) samples were positive for 3GC-R E. coli in the animal, food, and human components, respectively. Most of the isolates (472/526, 89.7%) presented MDR phenotypes. The ESBL blaCTX-M-55, blaCTX-M-3, blaCTX-M-15, blaCTX-M-65, blaCTX-M-27, and blaCTX-M-14 were the most prevalent ESBL genes while blaCMY-2 was the only AmpC detected gene. The mcr-1 gene was found in 20 (16.4%), 26 (10.1%), and 3 (2.1%) of isolates from animal, food, and human components, respectively. The implication of poultry products in the prevalence of ESBL/AmpC and mcr genes in 3GC-R must be considered in the surveillance of antimicrobial resistance.


2016 ◽  
Vol 61 (2) ◽  
Author(s):  
Bao-Tao Liu ◽  
Feng-Jing Song ◽  
Ming Zou ◽  
Zhi-Hui Hao ◽  
Hu Shan

ABSTRACT We report the presence of mcr-1 in Escherichia coli and carbapenem-resistant Cronobacter sakazakii from the same diseased chicken. The mcr-1 gene linked with ISApl1 was located on two different IncI2 plasmids, including one multidrug plasmid in E. coli, whereas fosA3-bla NDM-9 was on an IncB/O plasmid in C. sakazakii. The development of the fosA3-bla NDM-9 resistance region was mediated by IS26. The colocation of mcr-1 or bla NDM-9 with other resistance genes will accelerate the dissemination of the two genes.


Sign in / Sign up

Export Citation Format

Share Document