scholarly journals Composition of a maternal high fat diet rich in satured fats and omega 3 in gestation and lactation for studies with rodents

2019 ◽  
Vol 32 ◽  
Author(s):  
Laura Mata de Lima SILVA ◽  
Aline Maria Nunes de Lira Gomes BLOISE ◽  
Danilo Augusto Ferreira FONTES ◽  
Katarynna Santos de ARAÚJO ◽  
Mariana Oliveira BARBOSA ◽  
...  

ABSTRACT Objective To prepare a high fat diet rich in satured fatty acids and supplemented with omega 3 for experimental studies in rodents. Methods Purified industrial ingredients and flaxseed oil as a source of omega 3 at a concentration of 3.5% (v/w) were used in the elaboration of the diets. Centesimal and nutritional compositions, fatty acids profile and dietary intake were evaluated. Serum levels of total protein, albumin, cholesterol and glucose in pregnant rats were verified. The offspring were assessed with regard to body mass and waist circumference. Statistical analysis was performed using the Kolmogorov-Smirnov, Anova One-Way test and Bonferroni post-test. Results High fat and high fat with omega 3 diets presented, respectively, 37% and 36% saturated fat, and the lipid amount was 80% higher than the American Institute of Nutrition 93G control diet. The omega 3 content was 50% higher in the high fat with omega 3 diet. There was no difference in consumption of diet types in weight (grams). The dams that received the High fat diet developed hypercholesterolemia and their High fat offspring exhibited higher body mass on the 1st day of life and increased abdominal circumference on the 30th day of life compared to the control and the high fat with omega 3 offspring. Conclusion The formulated diets with a higher amount of saturated fatty acids meet the nutritional requirements of the gestation and lactation period. The high fat diet with omega 3 was able to attenuate the changes observed in dams and their offspring.

2020 ◽  
Vol 11 (4) ◽  
pp. 347-359
Author(s):  
D. Valent ◽  
L. Arroyo ◽  
E. Fàbrega ◽  
M. Font-i-Furnols ◽  
M. Rodríguez-Palmero ◽  
...  

The pig is a valuable animal model to study obesity in humans due to the physiological similarity between humans and pigs in terms of digestive and associated metabolic processes. The dietary use of vegetal protein, probiotics and omega-3 fatty acids is recommended to control weight gain and to fight obesity-associated metabolic disorders. Likewise, there are recent reports on their beneficial effects on brain functions. The hypothalamus is the central part of the brain that regulates food intake by means of the production of food intake-regulatory hypothalamic neuropeptides, as neuropeptide Y (NPY), orexin A and pro-opiomelanocortin (POMC), and neurotransmitters, such as dopamine and serotonin. Other mesolimbic areas, such as the hippocampus, are also involved in the control of food intake. In this study, the effect of a high fat diet (HFD) alone or supplemented with these additives on brain neuropeptides and neurotransmitters was assessed in forty-three young pigs fed for 10 weeks with a control diet (T1), a high fat diet (HFD, T2), and HFD with vegetal protein supplemented with Bifidobacterium breve CECT8242 alone (T3) or in combination with omega-3 fatty acids (T4). A HFD provoked changes in regulatory neuropeptides and 3,4-dihydroxyphenylacetic acid (DOPAC) in the hypothalamus and alterations mostly in the dopaminergic system in the ventral hippocampus. Supplementation of the HFD with B. breve CECT8242, especially in combination with omega-3 fatty acids, was able to partially reverse the effects of HFD. Correlations between productive and neurochemical parameters supported these findings. These results confirm that pigs are an appropriate animal model alternative to rodents for the study of the effects of HFD on weight gain and obesity. Furthermore, they indicate the potential benefits of probiotics and omega-3 fatty acids on brain function.


2019 ◽  
Vol 97 (6) ◽  
pp. 693-701 ◽  
Author(s):  
Aline Haas de Mello ◽  
Rosiane de Bona Schraiber ◽  
Mariana Pereira de Souza Goldim ◽  
Khiany Mathias ◽  
Carolini Mendes ◽  
...  

This study evaluated the effects of omega-3 polyunsaturated fatty acids (PUFAs) on oxidative stress and energy metabolism parameters in the visceral fat of a high-fat-diet induced obesity model. Energy intake, body mass, and visceral fat mass were also evaluated. Male Swiss mice received either a control diet (control group) or a high-fat diet (obese group) for 6 weeks. After this period, the groups were divided into control + saline, control + omega-3, obese + saline, and obese + omega-3, and to these groups 400 mg·(kg body mass)−1·day−1 of fish oil (or saline) was administered orally, for 4 weeks. Energy intake and body mass were monitored throughout the experiment. In the 10th week, the animals were euthanized and the visceral fat (mesenteric) was removed. Treatment with omega-3 PUFAs did not affect energy intake or body mass, but it did reduced visceral fat mass. In visceral fat, omega-3 PUFAs reduced oxidative damage and alleviated changes to the antioxidant defense system and the Krebs cycle. The mitochondrial respiratory chain was neither altered by obesity nor by omega-3 PUFAs. In conclusion, omega-3 PUFAs have beneficial effects on the visceral fat of obese mice because they mitigate changes caused by the consumption of a high-fat diet.


Molecules ◽  
2018 ◽  
Vol 23 (7) ◽  
pp. 1814 ◽  
Author(s):  
Aline Santamarina ◽  
Giovana Jamar ◽  
Laís Mennitti ◽  
Veridiana de Rosso ◽  
Helena Cesar ◽  
...  

Obesity is associated with modern diets that are rich in saturated fatty acids. These dietary patterns are linked to low-grade proinflammatory mechanisms, such as the toll-like receptor 4/nuclear factor kappa-B (NF-κB) pathway rapidly activated through high-fat diets. Juçara is a berry rich in anthocyanins and unsaturated fatty acids, which prevents obesity and associated comorbidities. We evaluated the effect of different doses of freeze-dried juçara pulp on NF-κB pathway after the consumption of short-term high-fat diet. Male Wistar rats with ad libitum access to food and water were divided into four groups: Control diet (C), high-fat diet (HFC), high-fat diet with 0.25% juçara (HFJ 0.25%), and high-fat diet with 0.5% juçara (HFJ 0.5%). Energy intake and body weight gain were increased in HFC and HFJ 0.5% groups compared to C group. The hypothalamus weight reduced in the HFC group compared to C and HFJ 0.25% groups. Cytokines, MYD88, TRAF6, and pNF-κBp50 levels in the hypothalamus, serum triacylglycerol, LDL-cholesterol (LDL-C), and free fatty acid levels were improved in the HFJ 0.25% group. In summary, the HFJ 0.25% group had better protective effects than those in the HFJ 0.5%. Therefore, 0.25% juçara can be used to protect against central inflammation through the high-fat diet-induced NF-κB pathway.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anandini Swaminathan ◽  
Andrej Fokin ◽  
Tomas Venckūnas ◽  
Hans Degens

AbstractMethionine restriction (MR) has been shown to reduce the age-induced inflammation. We examined the effect of MR (0.17% methionine, 10% kCal fat) and MR + high fat diet (HFD) (0.17% methionine, 45% kCal fat) on body mass, food intake, glucose tolerance, resting energy expenditure, hind limb muscle mass, denervation-induced atrophy and overload-induced hypertrophy in young and old mice. In old mice, MR and MR + HFD induced a decrease in body mass. Muscle mass per body mass was lower in old compared to young mice. MR restored some of the HFD-induced reduction in muscle oxidative capacity. The denervation-induced atrophy of the m. gastrocnemius was larger in animals on MR than on a control diet, irrespective of age. Old mice on MR had larger hypertrophy of m. plantaris. Irrespective of age, MR and MR + HFD had better glucose tolerance compared to the other groups. Young and old mice on MR + HFD had a higher resting VO2 per body mass than HFD group. Mice on MR and MR + HFD had a resting respiratory quotient closer to 0.70, irrespective of age, indicating an increased utilization of lipids. In conclusion, MR in combination with resistance training may improve skeletal muscle and metabolic health in old age even in the face of obesity.


2003 ◽  
Vol 90 (2) ◽  
pp. 329-336 ◽  
Author(s):  
Anja Schou Lindman ◽  
Hanne Müller ◽  
Ingebjørg Seljeflot ◽  
Hans Prydz ◽  
Marit Veierød ◽  
...  

Dietary fat influences plasma levels of coagulation factor VII (FVII) and serum phospholipids (PL). It is, however, unknown if the fat-mediated changes in FVII are linked to PL. The present study aimed to investigate the effects of dietary fat on fasting and postprandial levels of activated FVII (FVIIa), FVII coagulant activity (FVIIc), FVII protein (FVIIag) and choline-containing PL (PC). In a randomized single-blinded crossover-designed study a high-fat diet (HSAFA), a low-fat diet (LSAFA), both rich in saturated fatty acids, and a high-fat diet rich in unsaturated fatty acids (HUFA) were consumed for 3 weeks. Twenty-five healthy females, in which postprandial responses were studied in a subset of twelve, were included. The HSAFA diet resulted in higher levels of fasting FVIIa and PC compared with the LSAFA and the HUFA diets (all comparisonsP≤0·01). The fasting PC levels after the LSAFA diet were also higher than after the HUFA diet (P<0·001). Postprandial levels of FVIIa and PC were highest on the HSAFA diet and different from LSAFA and HUFA (all comparisonsP≤0·05). Postprandial FVIIa was higher on the HUFA compared with the LSAFA diet (P<0·03), whereas the HUFA diet resulted in lower postprandial levels of PC than the LSAFA diet (P<0·001). Significant correlations between fasting levels of PC and FVIIc were found on all diets, whereas FVIIag was correlated to PC on the HSAFA and HUFA diet. The present results indicate that dietary fat, both quality and quantity, influences fasting and postprandial levels of FVIIa and PC. Although significant associations between fasting FVII and PC levels were found, our results do not support the assumption that postprandial FVII activation is linked to serum PC.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Bret Rust ◽  
Aaron Mehus ◽  
Joseph Idso ◽  
Matthew Picklo

Abstract Objectives Obesity and obesity-related disease contribute to health care costs and pose serious health risks. Rodent studies indicate that time-restricted feeding (TRF) may be effective in reducing adiposity and metabolic disease associated with obesity. However, the metabolic pathways impacted by TRF in the context of obesogenic, high-fat (HF) diets need clarity. In the present work we examined the metabolomic changes in plasma induced by TRF of a HF diet in mice compared to a HF diet eaten ad libitum (AL) vs AL intake of a low-fat (LF) control diet. Methods Male mice (12 weeks old) were fed a LF-AL diet (16%en fat), a HF-AL diet (48%en fat) or a HF diet restricted to feeding for 12 hours per day during the dark phase (HF-TRF). In week 9 of the study, energy expenditure data were collected. After 12 weeks, animals were fasted and plasma collected for clinical chemistries and metabolomic analysis. Multivariate analysis was used to discriminate diet treatments in untargeted metabolomic data. Results Energy expenditure measurements throughout the day showed a markedly reduced fasting respiratory exchange ratio (RER) in HF-TRF mice during the inactive (light) phase compared to AL groups. Measures of insulin resistance, while increased with HF-AL intake, were resolved in the HF-TRF group. Partial least squares discriminant analysis revealed plasma non-esterified fatty acids (NEFA) and amino acids (AA) to be important discriminators between diet treatments. TRF resulted in elevated NEFA concentrations of the saturated fatty acids (12:0 to 18:0) and the polyunsaturated fatty acids α-linolenic acid and linoleic acid compared to HF-AL. Conversely, the concentrations of aromatic and branched chain amino acids were reduced in HF-TRF mice compared to HF-AL mice. Conclusions Alterations in plasma metabolites following TRF of a HF diet are consistent with greater lipid utilization during the inactive phase as reflected in the RER. Decreases in the aromatic and branched chain amino acid concentrations are consistent with improved insulin sensitivity in humans. Funding Sources This work was supported by USDA-ARS project 3062-51000-053-00D. Supporting Tables, Images and/or Graphs


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3886
Author(s):  
Erdenetsogt Dungubat ◽  
Shiori Watabe ◽  
Arisa Togashi-Kumagai ◽  
Masato Watanabe ◽  
Yasuyuki Kobayashi ◽  
...  

Several recent experimental studies have investigated the effects of caffeine and chlorogenic acid (CGA), representative ingredients of coffee, on nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH). However, the results are conflicting, and their effects are yet to be clarified. In the present study, we examined the effects of caffeine and CGA on choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD)-fed mice, relatively new model mice of NASH. Seven-week-old male C57BL/6J mice were divided into the following groups: Control diet (control), CDAHFD (CDAHFD), CDAHFD supplemented with 0.05% (w/w) caffeine (caffeine), and CDAHFD supplemented with 0.1% (w/w) CGA (CGA). After seven weeks, the mice were killed and serum biochemical, histopathological, and molecular analyses were performed. Serum alanine aminotransferase (ALT) levels were significantly higher in the caffeine and CGA groups than in the CDAHFD group. On image analysis, the prevalence of Oil red O-positive areas (reflecting steatosis) was significantly higher in the caffeine group than in the CDAHFD group, and that of CD45R-positive areas (reflecting lymphocytic infiltration) in the hepatic lobule was significantly higher in the caffeine and CGA groups than in the CDAHFD group. Hepatic expression of interleukin (IL)-6 mRNA was higher in the caffeine and CGA groups than in the CDAHFD group, and the difference was statistically significant for the caffeine group. In conclusion, in the present study, caffeine and CGA significantly worsened the markers of liver cell injury, inflammation, and/or steatosis in NASH lesions in mice.


Endocrinology ◽  
2013 ◽  
Vol 154 (9) ◽  
pp. 3110-3117 ◽  
Author(s):  
Intan S. Zulkafli ◽  
Brendan J. Waddell ◽  
Peter J. Mark

Fetal glucocorticoid excess programs several adverse outcomes in adult offspring, many of which can be prevented by postnatal, dietary omega-3 (n-3) fatty acids. Here we tested 2 separate hypotheses: 1) a postnatal high-fat diet exacerbates the glucocorticoid-programmed phenotype; and 2) postnatal, dietary n-3 fatty acids rescue programmed outcomes, even in the presence of a high-fat diet challenge. Pregnant Wistar rat dams were either untreated or administered dexamethasone acetate (Dex; 0.5 μg/mL drinking water) from day 13 of pregnancy. Offspring were cross-fostered to untreated mothers and males were weaned onto a standard (Std), high-fat, low n-3 (HF), or high-fat, high n-3 (HFHn-3) diet. Prenatal Dex reduced birth weight (26%) and delayed puberty onset by 1.2 days, irrespective of postnatal diet. Prenatal Dex programmed increased blood pressure in adult offspring, an effect worsened by the postnatal HF diet. Supplementation with high n-3 fatty acids, however, prevented both the Dex and HF-induced increases in blood pressure. Prenatal Dex also programmed increased adiposity, plasma cholesterol, and plasma triglyceride levels at 6 months of age, particularly in those offspring raised on the HF diet. But again, each of these adverse outcomes was rescued by supplementation of the HF diet with n-3 fatty acids. In conclusion, the capacity of n-3 fatty acids to overcome adverse programming outcomes remains evident, even in the presence of a HF diet challenge.


2013 ◽  
Vol 1537 ◽  
pp. 191-200 ◽  
Author(s):  
Hyoungil Oh ◽  
Stephane Boghossian ◽  
David A. York ◽  
MieJung Park-York

Sign in / Sign up

Export Citation Format

Share Document