Differential cytokine expression in T-cell subsets of chicken caecal tonsils co-cultured with three species of Lactobacillus

2012 ◽  
Vol 3 (3) ◽  
pp. 205-210 ◽  
Author(s):  
J.T. Brisbin ◽  
P. Parvizi ◽  
S. Sharif

Members of the intestinal microbiota play an important role in the development of T-cells. Little is known about responses of intestinal T-cell subsets of chickens to commensal bacteria. Therefore, we set out to characterise cytokine responses in T-cells after exposure to lactobacilli. Caecal tonsil mononuclear cells were isolated and co-cultured with Lactobacillus acidophilus, Lactobacillus reuteri and Lactobacillus salivarius for 12 hours. Subsequently the CD4+ and CD8+ cells were fractionated by flow cytometry and the expression of pro- and anti-inflammatory cytokines as well as Toll-like receptor 21 (TLR21) was determined. The results demonstrated that chicken CD4+ and CD8+ T-cells express TLR21 and that the various isolates of lactobacilli differentially induces the expression of interleukin 10, interferon-gamma and transforming growth factor beta. Our results demonstrate that different Lactobacillus species have the capacity to regulate intestinal T-cell responses and that these responses may be important to intestinal homeostasis.

Blood ◽  
1997 ◽  
Vol 90 (5) ◽  
pp. 2089-2096 ◽  
Author(s):  
David C. Halverson ◽  
Gretchen N. Schwartz ◽  
Charles Carter ◽  
Ronald E. Gress ◽  
Daniel H. Fowler

Abstract We have previously shown that allospecific murine CD8+ T cells of the Tc1 and Tc2 phenotype could be generated in vitro, and that such functionally defined T-cell subsets mediated a graft-versus-leukemia (GVL) effect with reduced graft-versus-host disease (GVHD). To evaluate whether analogous Tc1 and Tc2 subsets might be generated in humans, CD8+ T cells were allostimulated in the presence of either interleukin-12 (IL-12) and transforming growth factor-beta (TGF-β) (Tc1 culture) or IL-4 (Tc2 culture). Tc1-type CD8 cells secreted the type I cytokines IL-2 and interferon gamma (IFN-γ), whereas Tc2-type cells primarily secreted the type II cytokines IL-4, IL-5, and IL-10. Both cytokine-secreting populations effectively lysed tumor targets when stimulated with anti–T-cell receptor (TCR) antibody; allospecificity of Tc1- and Tc2-mediated cytolytic function was demonstrated using bone marrow–derived stimulator cells as targets. In addition, both Tc1 and Tc2 subsets were capable of mediating cytolysis through the fas pathway. We therefore conclude that allospecific human CD8+ T cells of Tc1 and Tc2 phenotype can be generated in vitro, and that these T-cell populations may be important for the mediation and regulation of allogeneic transplantation responses.


2005 ◽  
Vol 79 (12) ◽  
pp. 7852-7859 ◽  
Author(s):  
Simon M. Rushbrook ◽  
Scott M. Ward ◽  
Esther Unitt ◽  
Sarah L. Vowler ◽  
Michaela Lucas ◽  
...  

ABSTRACT The basis of chronic infection following exposure to hepatitis C virus (HCV) infection is unexplained. One factor may be the low frequency and immature phenotype of virus-specific CD8+ T cells. The role of CD4+CD25+ T regulatory (Treg) cells in priming and expanding virus-specific CD8+ T cells was investigated. Twenty HLA-A2-positive patients with persistent HCV infection and 46 healthy controls were studied. Virus-specific CD8+ T-cell proliferation and gamma interferon (IFN-γ) frequency were analyzed with/without depletion of Treg cells, using peptides derived from HCV, Epstein-Barr virus (EBV), and cytomegalovirus (CMV). CD4+CD25+ Treg cells inhibited anti-CD3/CD28 CD8+ T-cell proliferation and perforin expression. Depletion of CD4+CD25+ Treg cells from chronic HCV patients in vitro increased HCV and EBV peptide-driven expansion (P = 0.0005 and P = 0.002, respectively) and also the number of HCV- and EBV-specific IFN-γ-expressing CD8+ T cells. Although stimulated CD8+ T cells expressed receptors for transforming growth factor beta and interleukin-10, the presence of antibody to transforming growth factor beta and interleukin-10 had no effect on the suppressive effect of CD4+CD25+ regulatory T cells on CD8+ T-cell proliferation. In conclusion, marked CD4+CD25+ regulatory T-cell activity is present in patients with chronic HCV infection, which may contribute to weak HCV-specific CD8+ T-cell responses and viral persistence.


2020 ◽  
Vol 4 (10) ◽  
pp. 2143-2157 ◽  
Author(s):  
Alak Manna ◽  
Timothy Kellett ◽  
Sonikpreet Aulakh ◽  
Laura J. Lewis-Tuffin ◽  
Navnita Dutta ◽  
...  

Abstract Patients with chronic lymphocytic leukemia (CLL) are characterized by monoclonal expansion of CD5+CD23+CD27+CD19+κ/λ+ B lymphocytes and are clinically noted to have profound immune suppression. In these patients, it has been recently shown that a subset of B cells possesses regulatory functions and secretes high levels of interleukin 10 (IL-10). Our investigation identified that CLL cells with a CD19+CD24+CD38hi immunophenotype (B regulatory cell [Breg]–like CLL cells) produce high amounts of IL-10 and transforming growth factor β (TGF-β) and are capable of transforming naive T helper cells into CD4+CD25+FoxP3+ T regulatory cells (Tregs) in an IL-10/TGF-β-dependent manner. A strong correlation between the percentage of CD38+ CLL cells and Tregs was observed. CD38hi Tregs comprised more than 50% of Tregs in peripheral blood mononuclear cells (PBMCs) in patients with CLL. Anti-CD38 targeting agents resulted in lethality of both Breg-like CLL and Treg cells via apoptosis. Ex vivo, use of anti-CD38 monoclonal antibody (mAb) therapy was associated with a reduction in IL-10 and CLL patient-derived Tregs, but an increase in interferon-γ and proliferation of cytotoxic CD8+ T cells with an activated phenotype, which showed an improved ability to lyse patient-autologous CLL cells. Finally, effects of anti-CD38 mAb therapy were validated in a CLL–patient-derived xenograft model in vivo, which showed decreased percentage of Bregs, Tregs, and PD1+CD38hiCD8+ T cells, but increased Th17 and CD8+ T cells (vs vehicle). Altogether, our results demonstrate that targeting CD38 in CLL can modulate the tumor microenvironment; skewing T-cell populations from an immunosuppressive to immune-reactive milieu, thus promoting immune reconstitution for enhanced anti-CLL response.


1986 ◽  
Vol 163 (5) ◽  
pp. 1037-1050 ◽  
Author(s):  
J H Kehrl ◽  
L M Wakefield ◽  
A B Roberts ◽  
S Jakowlew ◽  
M Alvarez-Mon ◽  
...  

This study examines the potential role of transforming growth factor beta (TGF-beta) in the regulation of human T lymphocyte proliferation, and proposes that TGF-beta is an important autoregulatory lymphokine that limits T lymphocyte clonal expansion, and that TGF-beta production by T lymphocytes is important in T cell interactions with other cell types. TGF-beta was shown to inhibit IL-2-dependent T cell proliferation. The addition of picograms amounts of TGF-beta to cultures of IL-2-stimulated human T lymphocytes suppressed DNA synthesis by 60-80%. A potential mechanism of this inhibition was found. TGF-beta inhibited IL-2-induced upregulation of the IL-2 and transferrin receptors. Specific high-affinity receptors for TGF-beta were found both on resting and activated T cells. Cellular activation was shown to result in a five- to sixfold increase in the number of TGF-beta receptors on a per cell basis, without a change in the affinity of the receptor. Finally, the observations that activated T cells produce TGF-beta mRNA and that TGF-beta biologic activity is present in supernatants conditioned by activated T cells is strong evidence that T cells themselves are a source of TGF-beta. Resting T cells were found to have low to undetectable levels of TGF-beta mRNA, while PHA activation resulted in a rapid increase in TGF-beta mRNA levels (within 2 h). Both T4 and T8 lymphocytes were found to make mRNA for TGF-beta upon activation. Using both a soft agar assay and a competitive binding assay, TGF-beta biologic activity was found in supernatants conditioned by T cells; T cell activation resulted in a 10-50-fold increase in TGF-beta production. Thus, TGF-beta may be an important antigen-nonspecific regulator of human T cell proliferation, and important in T cell interaction with other cell types whose cellular functions are modulated by TGF-beta.


2021 ◽  
Vol 13 (593) ◽  
pp. eabb7495
Author(s):  
Yoshinori Yasuda ◽  
Shintaro Iwama ◽  
Daisuke Sugiyama ◽  
Takayuki Okuji ◽  
Tomoko Kobayashi ◽  
...  

Immune-related adverse events induced by anti–programmed cell death–1 antibodies (PD-1-Ab), including destructive thyroiditis (thyroid-irAE), are thought to be caused by activated T cells. However, the T cell subsets that are directly responsible for damaging self-organs remain unclear. To clarify which T cell subsets are involved in the development of thyroid-irAE, a mouse model of thyroid-irAE was analyzed. PD-1-Ab administration 2.5 months after immunization with thyroglobulin caused destructive thyroiditis. Thyroiditis was completely prevented by previous depletion of CD4+ T cells and partially prevented by depleting CD8+ T cells. The frequencies of central and effector memory CD4+ T cell subsets and the secretion of interferon-γ after stimulation with thyroglobulin were increased in the cervical lymph nodes of mice with thyroid-irAE compared with controls. Histopathological analysis revealed infiltration of CD4+ T cells expressing granzyme B in thyroid glands and major histocompatibility complex class II expression on thyrocytes in mice with thyroid-irAE. Adoptive transfer of CD4+ T cells from cervical lymph nodes in mice with thyroid-irAE caused destruction of thyroid follicular architecture in the irradiated recipient mice. Flow cytometric analyses showed that the frequencies of central and effector memory CD4+ T cells expressing the cytotoxic marker CD27 were higher in peripheral blood mononuclear cells collected from patients with thyroid-irAE induced by PD-1-Ab versus those without. These data suggest a critical role for cytotoxic memory CD4+ T cells activated by PD-1-Ab in the pathogenesis of thyroid-irAE.


Blood ◽  
1989 ◽  
Vol 74 (2) ◽  
pp. 786-792 ◽  
Author(s):  
TH Totterman ◽  
M Carlsson ◽  
B Simonsson ◽  
M Bengtsson ◽  
K Nilsson

Abstract Two-color FACS analysis was used to study activated and “functional” T and natural killer (NK) cell subsets of circulating lymphocytes in 23 patients with B-type chronic lymphocytic leukemia (B-CLL) and in 30 healthy subjects. As compared with controls, B-CLL patients had increased absolute numbers of phenotypically activated, HLA-DR+ CD4+ and CD8+ cells and T suppressor/effector (CD11b+CD8+) cells. When patients in Rai stages II through IV (n = 11) were compared with cases in Rai stages O through I (n = 12), the former group of patients had higher numbers of activated CD4+ and CD8+ T cells and decreased levels of suppressor/effector T cells. The absolute numbers of T suppressor/inducer (CD45R+CD4+) cells were elevated in patients with stage O through I disease but within normal range in stage II through IV leukemia. We further showed that the absolute numbers of NK-like (CD16+) cells and their activated counterparts (DR+CD16+) are elevated in B-CLL patients as compared with healthy subjects. The comparison of relative T and NK subsets in the blood of patients and controls showed that the proportions of CD4+, CD8+, and CD16+ cells expressing the activation marker HLA-DR were increased in B-CLL. Furthermore, the percentage of T-suppressor/inducer (CD45R+) cells within the CD4+ population was decreased in the patients. The proportion of T- suppressor/effector (CD11b+) cells within the CD8+ subset was reduced in subjects with stage II-IV disease only. When stimulated in vitro with the T-cell-dependent inducer TPA, B-CLL cells from patients in Rai stages II through IV secreted larger amounts of IgM as compared with cells from stage O through I patients. A positive correlation was observed between the degree of phenotypic activation of CD4+ T-helper cells and their functional capacity to augment IgM secretion by autologous B-CLL cells. Our findings indicate a tumor cell-directed regulatory role of T cells (and possibly NK cells as well) in B-CLL. Furthermore, monitoring of phenotypically activated and functional T- cell subsets may be helpful in the prediction of disease progression and timing of therapy in B-CLL.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3313-3313
Author(s):  
J. Joseph Melenhorst ◽  
Josette Zeilah ◽  
Edgardo Sosa ◽  
Dean Follmann ◽  
Nancy F. Hensel ◽  
...  

Abstract Human T cell development occurs in two waves of development and proliferation: first, early T cells expressing the TCRb chain but not the α-chain are selected for functional TCRβ protein independent of HLA recognition, a process called β-selection; second, thymocytes expressing both the α- and β-TCR are selected for intermediate affinity for self-MHC/ self-peptide complex. This latter process is referred to as positive selection. We sought to determine whether the peripheral TCRVβ frequencies in the naïve T cell repertoire start off at a fixed rank order with minimal skewing as would be expected from a predominantly β-selected repertoire. A total of 22 TCRVβ proteins was quantitated by flow cytometry in a group of 20 unselected umbilical cord blood (UCB) samples (a kind gift from Dr. P. Rubinstein, NY Blood Center, NY), consisting of >80% naïve T cells as defined by CD27+CD45RA+ staining in CD4+ and CD8+ cells. A common rank order of TCRVβ protein frequencies was found in both CD4 and CD8 T cell subsets (figure 1). Median TCRVβ frequencies in CD4 and in CD8 cells of UCB were statistically not significantly different from the frequencies in adult donor CD4 and CD8 cells (Wilcoxon signed rank test; p > 0.2). Furthermore, the percentages of CD4 cells expressing a particular Vβ correlated significantly in CD8 cells (figure 2) with some Vβ proteins being predominantly expressed by either CD4 (Vβ2, Vβ5.1) or CD8 (Vβ14, Vβ7) cells. Our data therefore conform to the prediction that the TCRVβ frequencies are dominantly shaped by β-selection, and not by interactions of the αβTCR/ co-receptor with MHC/ antigen complexes during thymic selection. Figure 1. TCRBV in UCB CD4+ (top) and CD8+ (bottom) T cells Figure 1. TCRBV in UCB CD4+ (top) and CD8+ (bottom) T cells Figure 2. Comparison of TCRBV protein expression frequencies in CD4 and CD8 cells of UCB Figure 2. Comparison of TCRBV protein expression frequencies in CD4 and CD8 cells of UCB


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3001-3001 ◽  
Author(s):  
Michael Rettig ◽  
Steven M. Devine ◽  
Julie Ritchey ◽  
John F. DiPersio

Abstract We are currently evaluating a novel method for the procurement of peripheral blood stem cells from HLA matched sibling donors using a direct antagonist of the CXCR4/SDF-1 interaction called AMD3100 (A). Donors receive a single subcutaneous injection of A and then undergo a 20 liter leukapheresis (LP) four hours later. The LP product is then cryopreserved and subsequently transplanted following ablative conditioning. To date, we have performed 15 transplants with allografts collected following A alone. In comparison to allografts collected following five days of G-CSF, A mobilized allografts contain approximately 50% less CD34+ cells but 2–3 times more CD3+ cells. Nevertheless, the kinetics of neutrophil and platelet engraftment have been virtually identical to that observed following G-mobilized allografts and grades 2–4 acute GVHD has been observed in only 20% of recipients. We sought to analyze the functional and phenotypic properties of T cells collected following A alone to understand the relatively low rates of acute GVHD despite the transplantation of higher T-cell doses. In 3 donors, extensive T cell phenotyping was performed on donor peripheral blood prior to A, 6 hours following A, and also on the LP product collected after A. Specifically, we were seeking to determine whether any alteration in CD4+ or CD8+ subsets had occurred. We analyzed T-cell subsets using well described markers for central memory, effector memory, naïve, and effector memory RA phenotypes. We also assessed expression of CD62L, CD127, CCR7, and SLAM family members (CD48, CD150, and CD244) on both CD4+ and CD8+ cells. The activation status on CD4 and CD8 cells was assessed using markers for CD25, CD30, and CD69. Finally we assessed for quantitative changes in the mobilization of regulatory T cells by assaying the proportion of CD4+CD25+FoxP3+ cells mobilized following A. In none of these analyses could we detect any significant alteration in the relative ratios of CD4 or CD8 subsets mobilized by A. Finally, the functional capacity of purified CD3+ cells collected following A was assessed using a NOD/SCID xenogeneic GVHD model we have recently developed. In that model, survival of mice transplanted with A mobilized T-cells was similar to that observed with untreated T cells, suggesting that A mobilized T cells retain their GVHD-inducing capacity. In summary, these preliminary data suggest that AMD3100 induces a “pan-mobilization” of T cell subsets without any apparent skewing toward a particular subset. These studies are in contrast to others suggesting subtle phenotypic and functional changes in donor T cells after mobilization with G-CSF. Further studies evaluating A mobilized allografts are ongoing.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. SCI-39-SCI-39 ◽  
Author(s):  
Stanley Riddell ◽  
Cameron Turtle ◽  
Michael Hudecek ◽  
Daniel Sommermeyer ◽  
Michael C. Jensen

Abstract Adoptive T-cell therapy with tumor-reactive T cells is emerging as a highly effective strategy for eliminating even the most advanced chemotherapy refractory malignancies. Endogenous T cells specific for tumor-associated antigens can sometimes be isolated and expanded from the patient’s blood or tumor infiltrate, or more expeditiously can be engineered by gene transfer to express a T-cell receptor specific for a tumor associated MHC/peptide complex or a synthetic chimeric antigen receptor (CAR) specific for a tumor associated cell surface molecule. The remarkable regression of advanced acute lymphocytic leukemia and lymphoma in patients treated with T cells engineered to express CD19-specific CARs illustrates the potential for this approach to transform clinical care. Therapeutic activity is variable in individual patients, however, and this appears to correlate with the ability of transferred, tumor-reactive T cells to persist and proliferate in vivo, and to retain effector function. These attributes may reflect both the qualities of the T cells that are isolated or engineered for therapy, and the local tumor microenvironment that may contain regulatory T cells; cells that express ligands that engage inhibitor receptors on effector T cells or cytokines that inhibit effector T-cell proliferation. The CD4+ and CD8+ T cell pools in normal individuals contain a variety of naïve, memory, and regulatory T-cell subsets that differ in epigenetic, transcriptional, and functional properties. Because most clinical protocols have used polyclonal peripheral blood mononuclear cells as recipients for CAR gene transfer, the composition of T-cell products that are being administered is highly variable, particularly when the T cells are obtained from cancer patients that have received prior cytotoxic chemotherapy that can skew the phenotypic composition of the peripheral T-cell pool. As a consequence, transferring tumor-targeting receptors into polyclonal unselected cell populations provides poor control over the cellular composition of the final T-cell product, which may in part explain the marked differences in efficacy and toxicity that have been observed in the clinic, and may complicate regulatory approval of these novel therapies. Methods to derive T cells from distinct naïve and memory T-cell subsets have been developed, enabling the rapid production of therapeutic T cells of uniform composition. The results of preclinical studies that illustrate the improved potency of defined T-cell products that are engineered with tumor-specific CARs, and the clinical implementation of this approach in B-cell malignancies will be presented. Disclosures: Riddell: Cell Medica: Consultancy, Membership on an entity’s Board of Directors or advisory committees; ZetaRx: Consultancy.


Gut ◽  
1998 ◽  
Vol 43 (4) ◽  
pp. 499-505 ◽  
Author(s):  
A Stallmach ◽  
F Schäfer ◽  
S Hoffmann ◽  
S Weber ◽  
I Müller-Molaian ◽  
...  

Background—Immunoregulatory abnormalities of T cells might be of importance in the pathogenesis of pouchitis after ileoanal pouch anastomosis (IAP).Aims—To characterise T cell subsets, their state of activation, and production of cytokines in inflamed and non-inflamed pouches in patients with ulcerative colitis (UC) and familial adenomatous polyposis (FAP). The influence of T cell activation on mucosal transformation was also studied.Patients—Mucosal biopsy specimens were taken from 42 patients with IAP (33 with UC and nine with FAP).Methods—Mononuclear cells were isolated by standard techniques and characterised by three colour flow cytometry. Interferon γ (IFN-γ) production was studied using the ELISPOT technique.Results—In patients with UC with pouchitis there was a significant increase in the CD4:CD8 ratio, expression of activation markers on CD3+ cells, and number of IFNγ producing mononuclear cells compared with patients with UC without pouchitis (CD4:CD8 ratio 1.3 (range 0.7–2.7) versus 0.6 (0.1–1.0), p=0.012). In addition, a positive correlation between increased crypt depth and the number of CD4+ cells (r=0.57) was shown.Conclusion—The observed increase in activated mucosal CD4+ T cells and IFN-γ production might lead to mucosal destruction and crypt hyperplasia as seen in pouchitis.


Sign in / Sign up

Export Citation Format

Share Document