scholarly journals Anaerobic biodigestion of manure from finishing pig supplemented with ractopamine over different periods

2016 ◽  
Vol 36 (3) ◽  
pp. 399-407 ◽  
Author(s):  
Tânia M. B. dos Santos ◽  
Paula S. F. Trevizan ◽  
Cristiane A. N. Xavier ◽  
Charles Kiefer ◽  
André L. J. Ferraz

ABSTRACT This study aimed to evaluate the efficiency of anaerobic digestion and biogas production by manure from pig supplemented with ractopamine over different periods. We used manure of 50 finishing pigs according to the following diets: without supplementation and supplemented with 20-ppm ractopamine during 7, 14, 21, 28 and 35 days pre-slaughter. Continuous bench biodigesters were used in the experiment. We measured biogas production and made analyses of total (TS) and volatile solids (VS), pH, total phosphorus (total P), total nitrogen (total N) and ammoniacal nitrogen (ammoniacal N) in samples of manure, affluent and effluent from biodigesters. The pH and ammoniacal N as indicator parameters of the process balance and stability were satisfactory. Moreover, there was no difference in the reduction of TS and VS (50.04 and 56.51%, respectively). Manure of animals supplemented with ractopamine for 35 and 28 days presented higher biogas production (0.0722 and 0.0603 m3 kg−1, respectively). The supplementation with 20-ppm ractopamine for finishing pigs from 7 to 35 days does not present collapse risks for the anaerobic biodigestion process.

2014 ◽  
Vol 1010-1012 ◽  
pp. 1006-1009
Author(s):  
Xiao Ling Liu ◽  
Meng Meng Wang ◽  
Xue Jing Hu ◽  
Yong Hui Song

Anaerobic digestion and struvite precipitation were the two effective ways to treat excess sludge for recovering the bioenergy (biogas) and phosphorus. The total solids content played an important role in the biogas production and the phosphorus release. The experimental results showed that cumulative biogas decreased significantly with the increase of total solids content from 5% to 10% but increased subsequently with a further increase of total solids content, and the maximal cumulative biogas was achieved at 5% of total solids. The concentrations of PO43-P and total soluble P varied with total solids content, and the maximal concentrations were obtained under the condition of 20% of total solids, namely 1327 mg·L-1for PO43-P and 1288 mg·L-1for total soluble P. Pearson’s relationship analysis reflected that the released total soluble P was mainly composed of PO43-P during the anaerobic digestion. Furthermore, the maximal yield of PO43-P and the maximal solubilization ratio of total P were achieved at 15% of total solids, and they respectively reached 4.2 mg·g-1and 16.1% with 48% reduction of volatile solids and 40% reduction of total solids after anaerobic digestion.


1998 ◽  
Vol 37 (3) ◽  
pp. 235-240 ◽  
Author(s):  
Rob Portielje ◽  
Diederik T. Van der Molen

A trend-analysis of eutrophication variables was performed for a large number of lakes in The Netherlands. Data of in total 231 lakes were available. Data on chlorophyll-a, total phosphorus (total-P) and total nitrogen (total-N) were analysed over the period 1980-1996. Summer-averaged concentrations for chlorophyll-a, total-P and total-N decreased in respectively 65%, 73% and 75 of the lakes with at least eight years data between 1980 and 1996. Results for winter means were comparable (a negative trend in 54%, 77% and 69% for concentrations of chlorophyll-a, total-P and total-N respectively). Since 1980 the median decrease in the summer averaged concentrations of chlorophyll-a, total-P and total-N is 2.61 μg l−1 y−1, 0.008 mg l−1 y−1 and 0.046 mg l−1 y−1, respectively, illustrating the effects of (inter)national and regional measures to combat eutrophication.


2021 ◽  
Vol 11 (7) ◽  
pp. 3064
Author(s):  
Roberta Mota-Panizio ◽  
Manuel Jesús Hermoso-Orzáez ◽  
Luis Carmo-Calado ◽  
Gonçalo Lourinho ◽  
Paulo Sérgio Duque de Brito

The present study evaluates the digestion of cork boiling wastewater (CBW) through a biochemical methane potential (BMP) test. BMP assays were carried out with a working volume of 600 mL at a constant mesophilic temperature (35 °C). The experiment bottles contained CBW and inoculum (digested sludge from a wastewater treatment plant (WWTP)), with a ratio of inoculum/substrate (Ino/CBW) of 1:1 and 2:1 on the basis of volatile solids (VSs); the codigestion with food waste (FW) had a ratio of 2/0.7:0.3 (Ino/CBW:FW) and the codigestion with cow manure (CM) had a ratio of 2/0.5:0.5 (Ino/CBW:CM). Biogas and methane production was proportional to the inoculum substrate ratio (ISR) used. BMP tests have proved to be valuable for inferring the adequacy of anaerobic digestion to treat wastewater from the cork industry. The results indicate that the biomethane potential of CBWs for Ino/CBW ratios 1:1 and 2:1 is very low compared to other organic substrates. For the codigestion tests, the test with the Ino/CBW:CM ratio of 2/0.7:0.3 showed better biomethane yields, being in the expected values. This demonstrated that it is possible to perform the anaerobic digestion (AD) of CBW using a cosubstrate to increase biogas production and biomethane and to improve the quality of the final digestate.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3477
Author(s):  
Navodita Bhatnagar ◽  
David Ryan ◽  
Richard Murphy ◽  
Anne-Marie Enright

Anaerobic digestion (AD) of chicken litter (CL) is a viable alternative to disposal. However, methane yields from this primarily organic waste are quite low when mono-digested. This paper discusses the effect of an enzyme cocktail, trace element (TE) supplementation and selenium (Se) addition in small-scale batch biomethane potential (BMP) assays to enhance the AD of CL. Eleven different assays were set up in triplicate including assays containing only inoculum (blank), only CL (negative control) and cellulose and inoculum (positive control). The results indicate that both enzyme treatment and trace element supplementation enhanced the biogas and methane yield. The highest specific biogas and methane yields were noted for 1% enzyme-treated CL of 835.2 L/kg volatile solids (VS) and 460.8 L/kg VS, respectively. Usually, mono-digestion of CL is low due to high nitrogen content and the presence of recalcitrant lignocellulosic material from the bedding material. Enzyme treatment performed better than the addition of the TE mix and Se.


2005 ◽  
Vol 52 (1-2) ◽  
pp. 487-492 ◽  
Author(s):  
Y. Shang ◽  
B.R. Johnson ◽  
R. Sieger

A steady-state implementation of the IWA Anaerobic Digestion Model No. 1 (ADM1) has been applied to the anaerobic digesters in two wastewater treatment plants. The two plants have a wastewater treatment capacity of 76,000 and 820,000 m3/day, respectively, with approximately 12 and 205 dry metric tons sludge fed to digesters per day. The main purpose of this study is to compare the ADM1 model results with full-scale anaerobic digestion performance. For both plants, the prediction of the steady-state ADM1 implementation using the suggested physico-chemical and biochemical parameter values was able to reflect the results from the actual digester operations to a reasonable degree of accuracy on all parameters. The predicted total solids (TS) and volatile solids (VS) concentration in the digested biosolids, as well as the digester volatile solids destruction (VSD), biogas production and biogas yield are within 10% of the actual digester data. This study demonstrated that the ADM1 is a powerful tool for predicting the steady-state behaviour of anaerobic digesters treating sewage sludges. In addition, it showed that the use of a whole wastewater treatment plant simulator for fractionating the digester influent into the ADM1 input parameters was successful.


2016 ◽  
Vol 75 (4) ◽  
pp. 775-781 ◽  
Author(s):  
J. A. Barrios ◽  
U. Duran ◽  
A. Cano ◽  
M. Cisneros-Ortiz ◽  
S. Hernández

Anaerobic digestion of wastewater sludge is the preferred method for sludge treatment as it produces energy in the form of biogas as well as a stabilised product that may be land applied. Different pre-treatments have been proposed to solubilise organic matter and increase biogas production. Sludge electrooxidation with boron-doped diamond electrodes was used as pre-treatment for waste activated sludge (WAS) and its effect on physicochemical properties and biomethane potential (BMP) was evaluated. WAS with 2 and 3% total solids (TS) achieved 2.1 and 2.8% solubilisation, respectively, with higher solids requiring more energy. After pre-treatment, biodegradable chemical oxygen demand values were close to the maximum theoretical BMP, which makes sludge suitable for energy production. Anaerobic digestion reduced volatile solids (VS) by more than 30% in pre-treated sludge with a food to microorganism ratio of 0.15 g VSfed g−1 VSbiomass. Volatile fatty acids were lower than those for sludge without pre-treatment. Best pre-treatment conditions were 3% TS and 28.6 mA cm−2.


1993 ◽  
Vol 27 (5-6) ◽  
pp. 343-355 ◽  
Author(s):  
H. Draaijer ◽  
A. H. M. Buunen-van Bergen ◽  
E. van't Oever ◽  
A. A. J. C. Schellen

Two full scale projects are described in this paper; these are the Bergambacht wastewater plant (carrousel) and the Terneuzen wastewater plant (Schreiber system). Both plants use a system of intermittent aeration to combine nitrification and denitrification processes. At the Bergambacht plant biological phosphorus removal is carried out by the introduction of the side stream process. At the Terneuzen plant it is carried out by introducing anaerobic periods in the aeration tanks. The objective is to meet the new total nitrogen and phosphorus effluent standards in The Netherlands of resp. 10-15 and 1-2 mg/l. At the Terneuzen wastewater plant the standards could not be reached for total-nitrogen, mainly due to the low BOD to Kj-N ratio of 2:8 in the feed to the aeration tanks. Adjustments are suggested to improve the denitrification rate. At the Bergambacht wastewater plant effluent concentrations of 6 - 7 mg/l total N and 0.3 mg/l total P were achieved.


2020 ◽  
Vol 7 (8) ◽  
pp. 200443
Author(s):  
Ming Gao ◽  
Shuang Zhang ◽  
Xinxin Ma ◽  
Weijie Guan ◽  
Na Song ◽  
...  

Food waste contains numerous easily degradable components, and anaerobic digestion is prone to acidification and instability. This work aimed to investigate the effect of adding yeast on biogas production performance, when substrate is added after biogas production is reduced. The results showed that the daily biogas production increased 520 and 550 ml by adding 2.0% (volatile solids; VS) of activated yeast on the 12th and 37th day of anaerobic digestion, respectively, and the gas production was relatively stable. In the control group without yeast, the increase of gas production was significantly reduced. After the second addition of substrate and yeast, biogas production only increased 60 ml compared with that before the addition. After fermentation, the biogas production of yeast group also increased by 33.2% compared with the control group. Results of the analysis of indicators, such as volatile organic acids, alkalinity and propionic acid, showed that the stability of the anaerobic digestion system of the yeast group was higher. Thus, the yeast group is highly likely to recover normal gas production when the biogas production is reduced, and substrate is added. The results provide a reference for experiments on the industrialization of continuous anaerobic digestion to take tolerable measures when the organic load of the feed fluctuates dramatically.


2020 ◽  
Vol 10 (7) ◽  
pp. 2412
Author(s):  
Slawomir Kasinski

The objective of this study was to investigate the effect of process temperature on semi-continuous anaerobic digestion of the organic fraction separated during autoclaving of municipal waste. Tests were carried out in reactors with full mixing. Biogas production was higher in thermophilic conditions than in mesophilic conditions (0.92 L/g volatile solids at 55 °C vs. 0.42 L/g volatile solids at 37 °C, respectively). The resulting methane yields were 0.25-0.32 L CH4/g VS and 0.56–0.70 L CH4/g VS in mesophilic and thermophilic conditions, respectively. In both variants, the methane share was over 70% v/v. This work also discusses the potential impact of Maillard compounds on the efficiency of the fermentation process, which were probably produced during the process of autoclaving of municipal waste. These results indicate that, after autoclaving, the organic fraction of municipal waste can be an effective substrate for anaerobic digestion in thermophilic conditions.


2015 ◽  
Vol 768 ◽  
pp. 281-288
Author(s):  
Lian Hai Ren ◽  
Yan Bing Huang ◽  
Pan Wang

The variations of daily biogas yields, cumulative biogas yields, biogas composition analysis, total solids (TS) and volatile solids (VS) were studied in the process of mesophilic and dry anaerobic digestion of food waste under different oil contents (0%, 2%, 4%, 6%, 8%, 10%) at 35 °C. The gas production raised and then went down with the oil content, followed by 243.14, 245.64, 256.09, 269.25, 276.54, 284.22mL /g TS respectively. The research provided a reference for the pretreatment of food waste in follow-up continuous fermentation. Results showed that the period of the process of mesophilic dry anaerobic digestion under oil content of 0% was the shortest, with the total biogas production of 1275.5mL. During the process of the digestion, methane content of the biogas raised and then went down, up to a maximum of 77.62%. The removal rate of TS and VS in food waste with the oil content of 6% was the highest, obtained as 11.2% and 13.2%, respectively.


Sign in / Sign up

Export Citation Format

Share Document