scholarly journals Global DNA methylation changes in Cucurbitaceae inter-species grafting

2015 ◽  
Vol 15 (2) ◽  
pp. 112-116 ◽  
Author(s):  
Evangelia Avramidou ◽  
Aliki Kapazoglou ◽  
Filippos A. Aravanopoulos ◽  
Aliki Xanthopoulou ◽  
Ioannis Ganopoulos ◽  
...  

Grafting has been used to improve yield, fruit quality and disease resistance in a range of tree and vegetable species. The molecular mechanisms underpinning grafting responses have only recently started to be delineated. One of those mechanisms involves long distance transfer of genetic material from rootstock to scion alluding to an epigenetic component to the grafting process. In the research presented herein we extended published work on heritable changes in the DNA methylation pattern of Solanaceae scion genomes, in Cucurbitaceae inter-species grafting. Specifically, we examined global DNA methylation changes in scions of cucumber, melon and watermelon heterografted onto pumpkin rootstocks using MSAP analysis. We observed a significant increase of global DNA methylation in cucumber and melon scions pointing to an epigenetic effect in Cucurbitaceae heterografting. Exploitation of differential epigenetic marking in different rootstock-scion combinations could lead to development of epi-molecular markers for generation and selection of superior quality grafted vegetables.

2018 ◽  
Vol 13 (1) ◽  
pp. 327-334 ◽  
Author(s):  
Xiaowu Chen ◽  
Yonghua Zhao ◽  
Yudong He ◽  
Jinliang Zhao

AbstractSkewed sex development is prevalent in fish hybrids. However, the histological observation and molecular mechanisms remain elusive. In this study, we showed that the interspecific hybrids of the two fish species, Oreochromis niloticus and Oreochromis aureus, had a male ratio of 98.02%. Microscopic examination revealed that the gonads of both male and female hybrids were developmentally retarded. Compared with the ovaries, the testes of both O. niloticus and hybrids showed higher DNA methylation level in two selected regions in the promoter of cyp19a, the gonadal aromatase gene that converts androgens into estrogens, cyp19a showed higher level gene expression in the ovary than in the testis in both O. niloticus and hybrid tilapia. Methylation and gene expression level of cyp19a were negative correlation between the testis and ovary. Gene transcription was suppressed by the methylation of the cyp19a promoter in vitro. While there is no obvious difference of the methylation level in testis or ovary between O. niloticus and hybrids. Thus, the DNA methylation of the promoter of cyp19a may be an essential component of the sex maintenance, but not a determinant of high male ratio and developmental retardation of gonads in tilapia hybrids.


2019 ◽  
Vol 76 (Suppl 1) ◽  
pp. A57.2-A57
Author(s):  
Manosij Ghosh ◽  
Deniz Öner ◽  
Lode Godderis ◽  
Peter Hoet

IntroductionWhile studies have addressed genotoxic effects of CNT, only limited information are available on epigenetic effects. We designed a study to investigate DNA methylation alterations in vitro, in vivo and in occupationally exposed workers.Material and methodsIn vitro studies were performed in 16-HBE and THP-1 cells. For the in vivo study, BALB/c mice were administered intratracheally with single-wall CNT (SWCNTs) and multi-wall (MWCNTs) at high (2.5 mg/kg) and low (0.25 mg/kg) doses. For the cross sectional study, 24 workers exposed to aggregates of MWCNT of 500 nm–100 µm with concentrations of 4.6–42.6 µg/m3 and 43 unexposed referents were recruited. Global DNA methylation and demethylation patterns were analysed by LC-MS/MS. Methylation of specific genes was measured by Pyromark 24® (Qiagen). Genome-wide assessment of DNA methylation was performed with Infinium HumanMethylation450 BeadChip Array.ResultsIn general, we did not find global DNA methylation alteration for both CNTs. In 16-HBE cells, differentially methylated and expressed genes (MWCNTs>SWCNTs) from p53 signalling, DNA damage repair and cell cycle pathways were observed. In THP-1 cells, CNTs induced promoter-specific methylation of genes involved in several signaling cascade, vascular endothelial growth factor and platelet activation pathways. In lungs of BALB/c mice CNTs affected methylation of ATM gene. Finally, analysis of gene-specific DNA methylation in exposed workers revealed significant changes for DNMT1, ATM, SKI, and HDAC4 promoter CpGs.ConclusionsEpigenetic changes seem to occur at sub cyto-genotoxic concentrations in vitro. Alteration in DNA methylation pattern could be a natural reaction of cells but could also silence critical genes and reprogram cellular functions.


2019 ◽  
Vol 38 (9) ◽  
pp. 905-914 ◽  
Author(s):  
Jong-Uk Lee ◽  
Ji-Hye Son ◽  
Eun-Young Shim ◽  
Hyun Sub Cheong ◽  
Seung-Woo Shin ◽  
...  

2019 ◽  
Vol 10 ◽  
Author(s):  
Bruno Ramos-Molina ◽  
Lidia Sánchez-Alcoholado ◽  
Amanda Cabrera-Mulero ◽  
Raul Lopez-Dominguez ◽  
Pedro Carmona-Saez ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2703-2703
Author(s):  
Sonia Fabris ◽  
Valentina Bollati ◽  
Laura Mosca ◽  
Valeria Pegoraro ◽  
Domenica Ronchetti ◽  
...  

Abstract Multiple myeloma (MM) is a malignant proliferation of bone marrow plasma cells characterized by a wide spectrum of genetic and epigenetic changes. Global hypomethylation of repetitive genomic sequences such as long interspersed nuclear elements-1 (LINE-1) and Alu repetitive elements (approximately 500.000 and 1.4 million in the human genome) has been associated with chromosomal instability. Additionally, satellite alfa DNA (SAT-alpha DNA) hypomethylation has been reported to be associated to karyotypic instability in human cancer, possibly playing a role in centromere function. So far, the LINE-1/Alu and centromeric SAT-alpha DNA methylation patterns have not been investigated in the context of the different clinical and molecular MM subtypes. Global DNA methylation changes were investigated in a panel of 53 newly diagnosed, untreated MMs, 7 plasma cell leukemias (PCL) and 11 healthy subjects as controls. DNA was extracted from purified plasma cells, treated with bisulfite and analyzed by bisulfite-PCR and Pyrosequencing. Methylation of LINE-1 and Alu elements was shown to correlate with total 5mC content and thus used to estimate global DNA methylation. MMs showed a decrease of Alu (21.1%) and LINE-1 (70.0%) methylation average levels compared with controls (25.2% and 79.5% respectively). Lower median methylation levels were also found in centromeric SAT-alpha DNA of MMs (77.95%) compared to controls (89.5%). The median methylation level of PCLs was lower than MMs (16.7% versus 21.1% for Alu; 45.5% versus 70.0% for LINE-1; and 33.3% versus 77.9% for SATalpha DNA). Notably, a statistically significant association between SAT-alpha DNA and LINE-1 methylation (Spearman’s rank correlation, ρ = 0.94; P < 0.001) was found in MM. The comparison between methylation pattern and different molecular MM subgroups by means of non parametric tests, revealed that LINE-1 and SAT-alpha DNA methylation was significantly lower in the nonhyperdiploid versus hyperdiploid (HD) tumors (P = 0.01 and 0.02 respectively). Alu and SAT-alpha were significantly lower in the MMs with t(4;14) (P = 0.02 and 0.004 respectively). Finally, in the context of translocation/cyclin D (TC) classification, a statistically significant differences inside the five different groups were found for SAT-alpha DNA methylation (P = 0.008, Kruskal-Wallis test). These findings may provide insights into the molecular mechanisms of MM pathogenesis and suggest that our approach may contribute toward a more exhaustive stratification of the disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Karin Rothkegel ◽  
Alonso Espinoza ◽  
Dayan Sanhueza ◽  
Victoria Lillo-Carmona ◽  
Aníbal Riveros ◽  
...  

Peach (Prunus persica) fruits have a fast ripening process and a shelf-life of days, presenting a challenge for long-distance consuming markets. To prolong shelf-life, peach fruits are stored at low temperatures (0 to 7 °C) for at least two weeks, which can lead to the development of mealiness, a physiological disorder that reduces fruit quality and decreases consumer acceptance. Several studies have been made to understand this disorder, however, the molecular mechanisms underlying mealiness are not fully understood. Epigenetic factors, such as DNA methylation, modulate gene expression according to the genetic background and environmental conditions. In this sense, the aim of this work was to identify differentially methylated regions (DMRs) that could affect gene expression in contrasting individuals for mealiness. Peach flesh was studied at harvest time (E1 stage) and after cold storage (E3 stage) for 30 days. The distribution of DNA methylations within the eight chromosomes of P. persica showed higher methylation levels in pericentromeric regions and most differences between mealy and normal fruits were at Chr1, Chr4, and Chr8. Notably, differences in Chr4 co-localized with previous QTLs associated with mealiness. Additionally, the number of DMRs was higher in CHH cytosines of normal and mealy fruits at E3; however, most DMRs were attributed to mealy fruits from E1, increasing at E3. From RNA-Seq data, we observed that differentially expressed genes (DEGs) between normal and mealy fruits were associated with ethylene signaling, cell wall modification, lipid metabolism, oxidative stress and iron homeostasis. When integrating the annotation of DMRs and DEGs, we identified a CYP450 82A and an UDP-ARABINOSE 4 EPIMERASE 1 gene that were downregulated and hypermethylated in mealy fruits, coinciding with the co-localization of a transposable element (TE). Altogether, this study indicates that genetic differences between tolerant and susceptible individuals is predominantly affecting epigenetic regulation over gene expression, which could contribute to a metabolic alteration from earlier stages of development, resulting in mealiness at later stages. Finally, this epigenetic mark should be further studied for the development of new molecular tools in support of breeding programs.


2006 ◽  
Vol 18 (2) ◽  
pp. 148
Author(s):  
J. F. Yang ◽  
S. H. Yang ◽  
Y. Y. Niu ◽  
Q. Zhou ◽  
W. Z. Ji

Up to now, no primate animals have been successfully cloned with somatic cell nuclear transfer (SCNT) and little is known about molecular events occurring in SCNT embryos. DNA methylation reprogramming is likely to have a crucial role in establishing nuclear totipotency in normal development and in cloned animals. Epigenetic characteristics of donor cell nuclei and their epigenetic reprogramming in oocyte cytoplasm have been supposed as major factors influencing the development of SCNT embryos. In Experiment 1, on donor cells used in a previous SCNT at our laboratory, global DNA methylation and histone 3 lysine 9 acetylation (H3K9ac) of three cell lines (S11, S1-04, and S1-03) derived from ear skin were examined after serum starvation by immunofluorescence with monoclonal antibody to 5-methyl cytosine (Oncogene, Science, Inc., Cambridge, MA, USA) and anti-acetyl-Histone H3 (Lys 9) (Upstate Jingmei Biotech, Ltd., Shenzhen, China). In the results, two cells lines, S11 and S1-04, supporting higher blastocyst development (about 20%) than that (7.8%) of S1-03, showed a higher level of H3K9ac than the S1-03 cell line. Global DNA methylation levels in the three cell lines were decreased after serum starvation, but no obvious correlation between the level and SCNT embryo developmental potential was found among the three cell lines. In Experiment 2, on SCNT and IVF embryos, global DNA methylation reprogramming during pre-implantation development was investigated with immunofluorescence and laser scanning microscopy techniques. In IVF embryos, active demethylation of paternal genome occurred soon after fertilization; subsequently, passive demethylation resulted in remarkably reduced global methylation level at the 8-cell stage and the morula stage. Thereafter, genomewide remethylation started at the late morula stage and an asymmetric methylation pattern was formed in blastocysts, with higher methylated trophectoderm than inner cell mass (ICM). Compared with IVF embryos, most SCNT 2-cell embryos and ICM in blastocysts showed higher methylation levels, and the asymmetric methylation pattern was not as evident as that in IVF blastocysts. Some SCNT 8-cell embryos showed higher methylation, but others were slightly stained, even lower than IVF embryos. In conclusion, the higher global H3K9 acetylation level of donor cells may benefit chromatin remolding and development of SCNT embryos. Abnormal methylation reprogramming in most SCNT embryos, especially in ICM of blastocysts, may be one main obstacle for primate cloning, although relatively high blastocyst development rate was obtained. DNA methylation reprogramming in rhesus monkey pre-implantation embryos, on the whole, was as conservative as that reported in other mammals.


2020 ◽  
Vol 11 (9) ◽  
pp. 7421-7426 ◽  
Author(s):  
Gregor C. Burdeos ◽  
Ralf Blank ◽  
Siegfried Wolffram

The plant flavonol quercetin causes multiple health-promoting effects in human and animals.


Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 912 ◽  
Author(s):  
Scelfo ◽  
Fachinetti

In order to maintain cell and organism homeostasis, the genetic material has to be faithfully and equally inherited through cell divisions while preserving its integrity. Centromeres play an essential task in this process; they are special sites on chromosomes where kinetochores form on repetitive DNA sequences to enable accurate chromosome segregation. Recent evidence suggests that centromeric DNA sequences, and epigenetic regulation of centromeres, have important roles in centromere physiology. In particular, DNA methylation is abundant at the centromere, and aberrant DNA methylation, observed in certain tumors, has been correlated to aneuploidy and genomic instability. In this review, we evaluate past and current insights on the relationship between centromere function and the DNA methylation pattern of its underlying sequences.


Sign in / Sign up

Export Citation Format

Share Document