scholarly journals Alleviative effects of chitosan or humic acid on Vitex trifolia ‘Purpurea’ grown under salinity stress

2021 ◽  
Vol 27 (1) ◽  
pp. 88-102
Author(s):  
Hossam Ahmed Ashour ◽  
Sanaa Esmail Ahmed Esmail ◽  
Mohamed Salah Kotb

Abstract Pots experiment was conducted to investigate the effect of bio-stimulators chitosan (CHT) or humic acid (HA) on Vitex trifolia ‘Purpurea’ exposed to salinity stress. Salinity stress was imposed by irrigation with saline water at concentration of 1000, 2500 and 5000 ppm, in addition to control (280 ppm), plants exposed to salinity were sprayed every 4 weeks with either CHT at concentrations of 30, 60 and 90 ppm or HA at concentrations of 1000, 1500 and 2000 ppm, while control plants sprayed only with tap water. The results showed that, with increasing salinity stress all vegetative growth parameters were decreased and chemical constituents including total chlorophylls total carbohydrates, K+ %, Ca2+ % and K+/Na+ ratio were reduced. In contrast, elevating salinity stress increased contents of proline, total phenolic, Na+ %, Cl− %. On the other hand, foliar application of either CHT or HA had favorable impact on increasing vegetative traits and chemical compositions, meanwhile reducing accumulation of total phenolic, Na+ and Cl− % toxic ions in leaves, HA was generally more effective than CHT. Based on the results, it can be recommended that, CHT or HA at high concentration was the best effective treatments; however, HA was superior and economic treatment recommended for alleviating the adverse impact of salinity stress on Vitex trifolia ‘Purpurea’ plants irrigated with saline water at concentration up to 5000 ppm.

2017 ◽  
Vol 5 (4) ◽  
pp. 136 ◽  
Author(s):  
Ashour, H. A. ◽  
Abdel Wahab M. Mahmoud

An open field experiment was carried out during 2015 and 2016 seasons at the experimental nursery of the Ornamental Horticulture Department, Faculty of Agriculture, Cairo University, Egypt. The purpose of present research was to investigate the effect of foliar application of nano silicon with different concentrations and gypsum soil application on growth, flowering and chemical constituents of Jatropha integerrima plants irrigated with different levels of saline water. The concentrations of saline water were (1000, 2000 and 4000 ppm), in addition to tap water (270 ppm) as a control, simultaneously plants were received monthly foliar application of nano silicon 1 and 2 mM or soil application of gypsum at 20 g/plant, either applied individually or in combination.The results showed that, elevating salt concentration in irrigation water decreased vegetative growth characteristics, flowering traits, leaves anatomy and chemical constituents. In contrast, increasing salinity of irrigation water boosted contents of proline, Ca%, Na%, Cl%, total phenolic and flavonoids. On the other hand, foliar application of nano silicon and soil addition of gypsum treatments either individually or in combination had favorable effects on enhancing vegetative parameters and chemical constitutes, meanwhile decreasing accumulation of Na%, Cl%, total phenolic and flavonoids in leaves. It can be concluded that, foliar spray of nano silicon combined with soil addition of gypsum was the best effective and economic treatment recommended for mitigating the harmful effect of salinity stress on Jatropha plants irrigated with saline water at concentration up to 4000 ppm.


Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 711
Author(s):  
Mohamed M. El-Mogy ◽  
Mohamed Abdel M. Wahab ◽  
Mohamed B. I. El-Sawy ◽  
Aditya Parmar

Foliar application of micronutrients has become a common farm management practice to increase the overall yield of various crops. However, the effects of foliar fertilization on shelf life and postharvest quality of the crops are rather under-researched. The aim of this field experiment was to evaluate the effect of foliar application of individual mineral nutrients (calcium (Ca), zinc (Zn), manganese (Mn), and iron (Fe) on pre and postharvest quality of broccoli. The broccoli plants were subjected to single foliar sprays of either Ca, Fe, Zn, or Mn, which was repeated four times during plant growth at a 1 g/kg concentration. Once harvested, the broccoli heads were refrigerated at 4 °C for 28 days. Our results indicated that foliar application of Ca, Zn, Mn, and Fe did not have a significant effect on plant growth parameters, apart from enhancing Soil Plant Analysis Development (SPAD) chlorophyll meter values. However, during postharvest, foliar application treatment showed a positive response on weight loss during storage and reduction in yellowing of the broccoli heads. Foliar treatments increased the concentration of Nitrogen (N), Phosphorus (P), Ca, Zn, Mn and Fe significantly in the broccoli head tissue. Total chlorophyll content, total phenolic compound, ascorbic acid, peroxidase activity, glucoraphanin and glucobrassicin and flavonoids were significantly increased by all foliar treatments. Crude protein content and sulforaphane were enhanced by Ca and Mn treatments. Overall, foliar application of the investigated mineral nutrients may prove beneficial in improving the shelf-life and nutrient content of broccoli during postharvest handling and storage.


Author(s):  
Kawthar, A. E. Rabie ◽  
M. H. El-Sherif ◽  
R. M. El-Shahat ◽  
Fatma, S. I. Ali

Two pot experiments were carried out during the two successive seasons of 2010/2011 and 2011/ 2012 to apply mineral nitrogen and/or Azolla at different methods of addition with a reduction of mineral nitrogen fertilizer and its effect on vegetative growth, the yield of inflorescences, total phenolic concentration, antioxidant activity, nitrate and nitrite concentrations and the volatile oil concentrations and composition of chamomile inflorescences in sandy soil. Data indicated that dry Azolla (DA) treatments increased significantly plant height, number of branches/plant, shoot fresh and dry weights and number of inflorescences/plant against the rest treatments. It is clear that DA singly induced maximum growth parameters in both seasons and the reverse was true with fresh Azolla (FA) alone. It is obvious that DA achieved the highest total phenolic concentrations, antioxidant activity and volatile oil (VO) concentrations, and the opposite response was true for nitrate & nitrite concentrations. Addition of 50% ammonium nitrate to 50% FA or 50% Azolla extract as foliar (spray Azolla) SA have positive effect on chemical constituents except nitrate and nitrite concentrations. It is evident that the highest chamazulene and α ̶ bisabolol oxide ̶ B were achieved with DA and the reverse was true for α ̶ bisabolol oxide ̶ A. Dry Azolla treatment alone was the most efficient one in increasing the yield production with increment in active substances of chamomile plant in sandy soil.


Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2363
Author(s):  
Abeer A. Mohamed ◽  
Mervat El-Hefny ◽  
Nader A. El-Shanhorey ◽  
Hayssam M. Ali

In the present study, the enhancement of the production of Origanum majorana essential oils (EOs) was studied by treating plants with ascorbic acid (AA) and tryptophan (Trp) at concentrations of 100, 200 and 300 mg/L and Moringa oleifera leaf extract (MLE) at 2.5%, 5% and 10% as foliar applications during the seasons 2018–2019. The toxicities of the EOs were assayed against four seed-borne fungi (Bipolaris orzyae, Curvularia lunata, Fusarium verticilliodies and F. graminearum) isolated from rice grains (Oryzae sativa). Vegetative growth parameters and EO production were enhanced by the application of AA, Trp and MLE in both seasons. Analysis of the EOs by Gas chromatography–mass spectrometry (GC-MS) showed that the main chemical constituents were terpineol (cis-β-(1-terpinenol)), terpinen-4-ol, 4-thujanol (sabinene hydrate), α-terpineol, cymene and sabinene. The highest fungal mycelial growth inhibition (FMGI) percentages against F. verticilliodies were 94.57% and 92.63% as MLE at 5% and 10%, respectively, was applied to plants and 85.60% and 82.19% against F. graminearum as Trp was applied to plants at 300 and 200 mg/L, respectively. EOs from the treated plant with MLE (10%) observed the highest FMGI (84.46%) against B. oryzae, and EOs from plants treated with AA as foliar application at 300 and 200 mg/L showed the highest FMGI values of 81.11% and 81.85%, respectively, against the growth of C. lunata. Application of EOs extracted from plants treated with Trp, AA and MLE at 300 mg/L, 300 mg/L and 10%, respectively, or untreated plants to rice seeds inhibited or decreased the fungal infection percentage from 82.5% (naturally infected grains) to 1.75%, 10.5%, 17.5% and 18.5%, respectively. In conclusion, the extracted EOs affected by the foliar application of O. majorana plants with Trp, AA, and MLE could be useful as a biofungicide against rice seed-borne fungi.


2018 ◽  
Vol 5 (8) ◽  
pp. 171809 ◽  
Author(s):  
M. M. Hussein ◽  
N. H. Abou-Baker

To investigate the effect of nano-zinc fertilizer on growth, yield and mineral status of cotton plants grown under salt stress, a pot experiment was set up in the greenhouse of the National Research Centre. The treatments were as follows: (I) diluted seawater: 10% (S1), 20% (S2) and tap water as a control (S0), (II) 100 ppm (NZn1), 200 ppm (NZn2) nano-zinc and distilled water as a control (NZn0). Irrigation with 10 and 20% seawater decreased dry weight (DW) of leaves by 11.53 and 43.22%, while decreases in bolls were 15.50 and 71.65%, respectively. Except for root DW and top/root ratio, the measured growth parameters were increased as nano-zinc concentration increased. As for the interaction between treatments, the highest DW of stem, leaves and bolls resulted from the addition of NZn2 under normal condition, followed by NZn2 x S1 and the next was NZn2 x S2. The foliar application of 200 ppm nano-Zn led to mitigating the adverse effect of salinity and confirmed that diluted seawater could be used in the irrigation of cotton plant. However, phosphorus fertilizer should be added with nano-Zn application to avoid P/Zn imbalance. Some elements’ status and their ratios were recorded.


Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 75
Author(s):  
Amira K. Nasrallah ◽  
Ahmed A. Kheder ◽  
Maimona A. Kord ◽  
Ahmed S. Fouad ◽  
Mohamed M. El-Mogy ◽  
...  

Water salinity is one of the major abiotic stresses, and the use of saline water for the agricultural sector will incur greater demand in the coming decades. Recently, nanoparticles (NPs) have been used for developing numerous plant fertilizers as a smart and powerful form of material with dual action that can alleviate the adverse effects of salinity and provide the plant with more efficient nutrient forms. This study evaluated the influence of calcium phosphate NPs (CaP-NPs) as a soil fertilizer application on the production and bioactive compounds of broad bean plants under salinity stress. Results showed that salinity had deleterious effects on plant yield with 55.9% reduction compared to control. On the other hand, CaP-NPs dramatically improved plant yield by 30% compared to conventional fertilizer under salinity stress. This improvement could be attributed to significantly higher enhancement in total soluble sugars, antioxidant enzymes, proline content, and total phenolics recorded use of nano-fertilizer compared to conventional use under salt stress. Additionally, nano-fertilizer reflected better mitigatory effects on plant growth parameters, photosynthetic pigments, and oxidative stress indicators (MDA and H2O2). Therefore, our results support the replacement of traditional fertilizers comprising Ca2+ or P with CaP-nano-fertilizers for higher plant productivity and sustainability under salt stress.


2020 ◽  
pp. 28-45
Author(s):  
W. M. A. Moghith ◽  
A. S. M. Youssef ◽  
M. A. Abd El-Wahab ◽  
Y. F. Y. Mohamed ◽  
M. Abou El-Ghait, Eman

The pot experiment was carried out during two successive seasons (2016/2017 & 2017/2018) to study the effect of five levels of salinity and three levels of silicon (Si), as a foliar-spray application as well as their combinations on growth, productivity and chemical constituents of chia (Salvia hispanica L.) plants. Results showed that there was a negative relationship between vegetative growth measurements i.e., plant height, fresh weight and dry weight, flowering growth and yield parameters i.e., main inflorescence height, main inflorescence weight, inflorescences weight, seeds weights, weight of 1000 seeds and calculated seeds yield /m2 and root growth measurements i.e. root length, root weight and root diameter values and salinity treatments in both seasons. Hence, as the concentrations of salinity increased, the values of these parameters decreased to reach the maximum decreasing at the high concentration (4.69 dS m-1). Therefore, the combination treatment between 0.68 dS m-1 salinity concentration and 2000 ppm silicon scored the highest values of these parameters, in the 1st and 2nd seasons. Meanwhile, the maximum values of N, P and K contents were recorded by the combination treatment between 0.68 dS m-1 salinity concentration and 2000 ppm silicon in both seasons. Whereas, the highest values of free proline, sodium and chloride content were gained by the high concentration of salinity 4.96 dS m-1 especially those received silicon at 0 ppm in both seasons. Conclusively, the highest growth, productivity and chemical constituents of chia (Salvia hispanica L.) plant, it is preferable to grow the plants under saline water irrigation concentration at (0.68 dS m-1) and spray with silicon at 2000 ppm.


2021 ◽  
Author(s):  
Amira Oueslati ◽  
Giuseppe Montevecchi ◽  
Andrea Antonelli ◽  
Hedi Ben Mansour

Abstract The purpose of this study was to evaluate the short-term irrigation effect with industrial poultry wastewater on young olive trees (Olea europaea L. cv. Chemlali). Industrial poultry wastewater can be considered as a bio-fertilizer due to its richness in nutritive elements (SO42−, HCO3−, total nitrogen and K+). The physico-chemical analysis of wastewater showed a high concentration of TSS, COD, BOD, COT, NO3−, and conductivity. Measurements indicated that poultry wastewater enhanced plant growth, leaves dry matter, and ashes in comparison with tap water, as well as poultry wastewater diluted with tap water, however, a decrease in total soluble sugars (glucose and fructose) was detected in leaves. The determination of fatty acid profile of young olive trees leaves irrigated with poultry wastewater showed richness on saturated fatty acids in comparison with mono- and poly-unsaturated ones. In addition, oleic acid (C18:1) presented the lowest content in leaves of trees irrigated with poultry wastewater irrigation. According to those results, poultry wastewater lends itself to being a hydric alternative and at the same time a source of nutrients that can help fill the water deficit in semi-arid countries and avoid costly waste disposal for slaughterhouses.


Horticulturae ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 100
Author(s):  
Iman M. El-Sayed ◽  
Rasha G. Salim ◽  
Eman F. El-Haggar ◽  
Rasha A. El-Ziat ◽  
Dina M. Soliman

Although goldenrod (Solidago canadensis) is considered an invasive plant in many countries, it is a global cut-flower species. In addition, demand for goldenrod has increased significantly in recent years. Thus, the present study aimed to evaluate the response of Solidago canadensis cv. Tara to brassinosteroids (BRs) at levels of 0.10−3, 10−6, and 10−8 M, and chitosan at 0, 100, 150, and 200 mg/L as a foliar application to increase the quality and quantity of production, and its polyphenolic compounds. Moreover, antibacterial activity and genetic polymorphism for both untreated and the optimally treated goldenrod were investigated. The results showed that the highest mean of growth characteristics was found when plants were treated with BRs at 10−8 M, whereas the longer vase life was obtained using 200 mg/L chitosan. Furthermore, higher pigment values, N, P, K, and total phenolic content, antioxidant capacity, chlorogenic acid, and rutin content were detected on plants treated with 200 mg/L chitosan. In addition, foliar application with 200 mg/L chitosan caused higher antibacterial activity among the control and BRs. The optimal treatment of BR at 10−8 M (89%) showed a low genetic similarity, based on sequence-related amplified polymorphism (SRAP) analysis, comparable with the control and 200 mg/L chitosan. BR at 10−8 M and 200 mg/L chitosan showed a significant enhancement of growth parameters. As a result, it can be concluded that goldenrod, as a herb extract, shows significant promise as a natural preservative in pharmaceutical, food, and cosmetic products.


2011 ◽  
Vol 39 (2) ◽  
pp. 172 ◽  
Author(s):  
Nusrat JABEEN ◽  
Rafiq AHMAD

Effect of foliar application of KNO3 on growth and the activity of nitrate reductase were studied in the leaves of sunflower (Helianthus annuus L.) and safflower (Carthamus tinctorius L.) plants growing under different levels of salinity. The seeds were sown in pots under non saline condition and saline water irrigation was started at three leaf stage after germination. Different concentration of saline water (i.e. 0.3% and 0.6%, equivalent to an EC of 4.8 and 8.6 dS/m respectively) were made by dissolving sea salt per litre of tap water. Nutrient solution of KNO3 was sprayed at the rate of 250 ppm. The concentration of Na+ and Cl- rapidly increased in the leaves of both the plants under salinity stress. In contrast the nitrate (NO3-) and soluble protein concentration were decreased with the increasing salinity. Salinity reduced leaf area, its fresh and dry weight per plant and also inhibited the activity of Nitrate reductase (NRA) enzyme. The application of KNO3 significantly reduced the increasing tendency of Na+ and Cl- and increased leaf area, its fresh and dry weight per plant, NO3- and soluble protein concentration and NR activity in leaves irrespective to the growth of plant under non saline or saline conditions.


Sign in / Sign up

Export Citation Format

Share Document