scholarly journals Effect of Carbon dioxide (CO2) on mortality and reproduction of Anagasta kuehniella (Zeller 1879), in mass rearing, aiming at the production of Trichogramma spp.

2013 ◽  
Vol 85 (2) ◽  
pp. 823-831 ◽  
Author(s):  
ALOISIO COELHO JUNIOR ◽  
JOSE R.P. PARRA

Eggs of Anagasta kuehniella (Zeller 1879) are widely used for mass rearing of Trichogramma spp. and other parasitoids and predators, largely commercialized in many countries. The aim of this study is to evaluate the effect of carbon dioxide (CO2) originated from larval metabolism on the biological parameters of A. kuehniella. For that purpose, we assess the production of carbon dioxide (CO2) per rearing tray of A. kuehniella and the effect of CO2 on the viability of egg-to-adult period and oviposition of A. kuehniella. Results allow to estimate that a rearing tray, containing 10,000 larvae between the 4th and 5th instars, produces an average of 30.67 mL of CO2 per hour. The highest egg production of A. kuehniella was obtained when the larvae were kept in rooms with lower concentration of CO2 (1,200 parts per million - ppm), producing 23% more eggs than in rooms with higher CO2 concentrations. In rooms with high density of trays (70 trays/room), CO2 concentration exceeded 4,400 ppm. The viability of the egg-to-adult period was not influenced by carbon dioxide.

2021 ◽  
Vol 13 (21) ◽  
pp. 12203
Author(s):  
Niklas Kappelt ◽  
Hugo Savill Russell ◽  
Szymon Kwiatkowski ◽  
Alireza Afshari ◽  
Matthew Stanley Johnson

Respiratory aerosols from breathing and talking are an important transmission route for viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Previous studies have found that particles with diameters ranging from 10 nm to 145 μm are produced from different regions in the respiratory system and especially smaller particles can remain airborne for long periods while carrying viral RNA. We present the first study in which respiratory aerosols have been simultaneously measured with carbon dioxide (CO2) to establish the correlation between the two concentrations. CO2 concentrations are easily available through low-cost sensors and could be used to estimate viral exposure through this correlation, whereas source-specific aerosol measurements are complicated and not possible with low-cost sensors. The increase in both respiratory aerosols and CO2 was linear over ten minutes in a 2 m3 chamber for all participants, suggesting a strong correlation. On average, talking released more particles than breathing, with 14,600 ± 16,800 min−1 (one-σ standard deviation) and 6210 ± 5630 min−1 on average, respectively, while CO2 increased with 139 ± 33 ppm min−1 during talking and 143 ± 29 ppm min−1 during breathing. Assuming a typical viral load of 7×106 RNA copies per mL of oral fluid, ten minutes of talking and breathing are estimated to produce 1 and 16 suspended RNA copies, respectively, correlating to a CO2 concentration of around 1800 ppm in a 2 m3 chamber. However, viral loads can vary by several orders of magnitude depending on the stage of the disease and the individual. It was therefore concluded that, by measuring CO2 concentrations, only the number and volume concentrations of released particles can be estimated with reasonable certainty, while the number of suspended RNA copies cannot.


2021 ◽  
Author(s):  
Niklas Kappelt ◽  
Hugo S. Russell ◽  
Szymon Kwiatkowski ◽  
Alireza Afshari ◽  
Matthew S. Johnson

Abstract Respiratory Aerosols from breathing and talking have found wide acceptance as a transmission route for viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Previous studies have found particles with diameters ranging from 10 nm to 145 µm, exhibited from different regions in the respiratory system. We present the first chamber study, in which respiratory aerosols have been simultaneously measured with carbon dioxide (CO2) to establish the correlation between the two concentrations. CO2 concentrations are easily available through low-cost sensors and could be used to estimate viral exposure through this correlation, whereas source-specific aerosol measurements are complicated and not possible with low cost sensors. The increase in both PM10 and CO2 was linear over ten minutes in a 2 m3 chamber for all participants, suggesting a strong correlation. On average, talking released more particles than breathing, with 14,600 ± 16,800 min-1 (one-σ standard deviation) and 6,210 ± 5,630 min-1 on average, respectively, while CO2 increased with 139 ± 33 ppm min-1 during talking and 143 ± 29 ppm min-1 during breathing. Assuming a typical viral load of 7 × 106 RNA copies per ml of oral fluid, ten minutes of talking and breathing are estimated to produce 7 and 16 suspended RNA copies, respectively, correlating to a CO2 concentration of around 1.800 ppm in a 2 m3 chamber. This provides a strong argument for keeping indoor spaces well ventilated and shows how CO2 concentrations, measured with low-cost sensors, could be used as a proxy for viral exposure.


2022 ◽  
Vol 24 (1) ◽  
Author(s):  
GOURI SHANKAR GIRI ◽  
S. V. S. RAJU ◽  
S. D. MOHAPATRA ◽  
MUNMUN MOHAPATRA

An experiment was conducted at Research Farm, National Rice Research Institute, Cuttack, Odisha, India to quantify the effect of elevated carbon dioxide (CO2) concentrations on the biology and morphometric parameters of yellow stem borer (Scirpophaga incertulas, Pyralidae, Lepidoptera). Yellow stem borer is one of the major pest of rice in the whole rice growing regions of South East Asia. The effect of three carbon dioxide concentrations i.e. 410 ppm (ambient), 550 ppm and 700 ppm on the duration of the developmental period as well as morphometric parameters of each stage of the lifecycle of the pest was analysed. It was found that, there was an increase in the duration of the developmental period of each stage of life cycle as the concentration of CO2 increases. However, the life span of the adult moth was significantly lower under the elevated CO2 concentrations when compared with ambient CO2 concentration. Morphometric parameters viz., mean length, width and weight of each larval instar, pupa and adult were found to be significantly higher in elevated concentrations of CO2 as compared to ambient concentration.


2020 ◽  
Vol 17 (9) ◽  
pp. 2487-2498 ◽  
Author(s):  
Marcus B. Wallin ◽  
Joachim Audet ◽  
Mike Peacock ◽  
Erik Sahlée ◽  
Mattias Winterdahl

Abstract. Headwater streams are known to be hotspots for carbon dioxide (CO2) emissions to the atmosphere and are hence important components in landscape carbon balances. However, surprisingly little is known about stream CO2 dynamics and emissions in agricultural settings, a land use type that globally covers ca. 40 % of the continental area. Here we present hourly measured in situ stream CO2 concentration data from a 11.3 km2 temperate agricultural headwater catchment covering more than 1 year (in total 339 d excluding periods of ice and snow cover). The stream CO2 concentrations during the entire study period were generally high (median 3.44 mg C L−1, corresponding to partial pressures (pCO2) of 4778 µatm) but were also highly variable (IQR = 3.26 mg C L−1). The CO2 concentration dynamics covered a variety of different timescales from seasonal to hourly, with an interplay of hydrological and biological controls. The hydrological control was strong (although with both positive and negative influences dependent on season), and CO2 concentrations changed rapidly in response to rainfall and snowmelt events. However, during growing-season base flow and receding flow conditions, aquatic primary production seemed to control the stream CO2 dynamics, resulting in elevated diel patterns. During the dry summer period, rapid rewetting following precipitation events generated high CO2 pulses exceeding the overall median level of stream CO2 (up to 3 times higher) observed during the whole study period. This finding highlights the importance of stream intermittency and its effect on stream CO2 dynamics. Given the observed high levels of CO2 and its temporally variable nature, agricultural streams clearly need more attention in order to understand and incorporate these considerable dynamics in large-scale extrapolations.


2019 ◽  
Author(s):  
Kamau Wright ◽  
Robert Galvez

Abstract Simulations and experiments are conducted to model, simulate, test and demonstrate the effect of plasma discharges on decomposition of carbon dioxide (CO2). A pin-to-plane discharge is employed in gas samples containing CO2. A high voltage plasma system is used which was previously shown to be able to decrease CO2 concentration in gas samples. The discharge is modeled and described, including monitoring electrical parameters such as current and voltage. The present study investigated plasma decomposition of carbon dioxide experimentally, and through simulation. A plasma micro-discharge was utilized to better understand plasma-CO2 interactions. Enhancements are suggested to help increase the efficiency and yield of the plasma-CO2 decomposition process. Gas samples are analyzed over time using a CO2 meter.


2017 ◽  
Vol 10 (2) ◽  
pp. 667-680 ◽  
Author(s):  
Shohei Nomura ◽  
Hitoshi Mukai ◽  
Yukio Terao ◽  
Toshinobu Machida ◽  
Yukihiro Nojiri

Abstract. We developed a battery-powered carbon dioxide (CO2) measurement system for monitoring at the summit of Mt. Fuji (3776 m a.s.l.), which experiences very low temperatures (below −20 °C) and severe environmental conditions without access to gridded electricity for 10 months (from September to June). Our measurement system used 100 batteries to run the measurement unit during these months. These batteries were charged during the 2-month summer season when gridded electricity was available, using a specially designed automatic battery-charging system. We installed this system in summer 2009 at the Mt. Fuji weather station; observations of atmospheric CO2 concentration were taken through December 2015. Measurements were never interrupted by a lack of battery power except for two cases in which lightning damaged a control board. Thus we obtained CO2 data during about 94 % of the 6-year period. Analytical performances (stability and accuracy) were better than 0.1 ppm, as tested by checking working standards and comparisons with flask sampling.Observational results showed that CO2 mole fractions at Mt. Fuji demonstrated clear seasonal variation. The trend and the variability of the CO2 growth rate observed at Mt. Fuji were very similar to those of the Mauna Loa Observatory (MLO). Seasonally, the concentration at Mt. Fuji was 2–10 ppm lower in summer and 2–12 ppm higher in winter than those at MLO. The lower concentrations at Mt. Fuji in summer are mainly attributed to episodes of air mass transport from Siberia or China, where CO2 is taken up by the terrestrial biosphere. On the other hand, the relatively higher concentrations in winter seem to reflect the high percentage of air masses originating from China or Southeast Asia during this period, which carry increased anthropogenic carbon dioxide. These results show that Mt. Fuji is not very influenced by local sources but rather by the sources and sinks over a very large region.Thus we conclude that, as this system could provide stable measurement data with relatively easy operation for 6 years at Mt. Fuji, it could be a useful monitoring technique for remote background sites elsewhere.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1373
Author(s):  
Amir Izzuddin Adnan ◽  
Mei Yin Ong ◽  
Saifuddin Nomanbhay ◽  
Pau Loke Show

Carbon dioxide is the most influential gas in greenhouse gasses and its amount in the atmosphere reached 412 µmol/mol in August 2020, which increased rapidly, by 48%, from preindustrial levels. A brand-new chemical industry, namely organic chemistry and catalysis science, must be developed with carbon dioxide (CO2) as the source of carbon. Nowadays, many techniques are available for controlling and removing carbon dioxide in different chemical processes. Since the utilization of CO2 as feedstock for a chemical commodity is of relevance today, this study will focus on how to increase CO2 solubility in culture media used for growing microbes. In this work, the CO2 solubility in a different medium was investigated. Sodium hydroxide (NaOH) and monoethanolamine (MEA) were added to the culture media (3.0 g/L dipotassium phosphate (K2HPO4), 0.2 g/L magnesium chloride (MgCl2), 0.2 g/L calcium chloride (CaCl2), and 1.0 g/L sodium chloride (NaCl)) for growing microbes in order to observe the difference in CO2 solubility. Factors of temperature and pressure were also studied. The determination of CO2 concentration in the solution was measured by gas analyzer. The result obtained from optimization revealed a maximum CO2 concentration of 19.029 mol/L in the culture media with MEA, at a pressure of 136.728 kPa, operating at 20.483 °C.


Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 487 ◽  
Author(s):  
Takashi Chiba ◽  
Yumi Haga ◽  
Makoto Inoue ◽  
Osamu Kiguchi ◽  
Takeshi Nagayoshi ◽  
...  

We have developed a simple measuring system prototype that uses an unmanned aerial vehicle (UAV) and a non-dispersive infrared (NDIR) analyzer to detect regional carbon dioxide (CO2) concentrations and obtain vertical CO2 distributions. Here, we report CO2 measurement results for the lower troposphere above Ogata Village, Akita Prefecture, Japan (about 40° N, 140° E, approximately −1 m amsl), obtained with this UAV system. The actual flight observations were conducted at 500, 400, 300, 200, 100, and 10 m above the ground, at least once a month during the daytime from February 2018 to February 2019. The raw CO2 values from the NDIR were calibrated by two different CO2 standard gases and high-purity nitrogen (N2) gas (as a CO2 zero gas; 0 ppm). During the observation period, the maximum CO2 concentration was measured in February 2019 and the minimum in August 2018. In all seasons, CO2 concentrations became higher as the flight altitude was increased. The monthly pattern of observed CO2 changes is similar to that generally observed in the Northern Hemisphere as well as to surface CO2 changes simulated by an atmospheric transport model of the Japan Meteorological Agency. It is highly probable that these changes reflect the vegetation distribution around the study area.


2016 ◽  
Vol 56 (1) ◽  
pp. 108 ◽  
Author(s):  
Mei Bai ◽  
David W. T. Griffith ◽  
Frances A. Phillips ◽  
Travis Naylor ◽  
Stephanie K. Muir ◽  
...  

Accurate measurements of methane (CH4) emissions from feedlot cattle are required for verifying greenhouse gas (GHG) accounting and mitigation strategies. We investigate a new method for estimating CH4 emissions by examining the correlation between CH4 and carbon dioxide (CO2) concentrations from two beef cattle feedlots in Australia representing southern temperate and northern subtropical locations. Concentrations of CH4 and CO2 were measured at the two feedlots during summer and winter, using open-path Fourier transform infrared spectroscopy. There was a strong correlation for the concentrations above background of CH4 and CO2 with concentration ratios of 0.008 to 0.044 ppm/ppm (R2 >0.90). The CH4/CO2 concentration ratio varied with animal diet and ambient temperature. The CH4/CO2 concentration ratio provides an alternative method to estimate CH4 emissions from feedlots when combined with CO2 production derived from metabolisable energy or heat production.


Sign in / Sign up

Export Citation Format

Share Document