scholarly journals Expressão em Escherichia coli da proteína capsidial do Watermelon mosaic virus e produção de anti-soro

2004 ◽  
Vol 29 (2) ◽  
pp. 215-219 ◽  
Author(s):  
Manuela R. Barbieri ◽  
Murilo G. de Carvalho ◽  
Eunize M. Zambolim ◽  
F. Murilo Zerbini

Um anti-soro policlonal específico para Watermelon mosaic virus (WMV) foi produzido por meio da imunização de coelhos com proteína capsidial purificada, expressa in vitro em células de Escherichia coli. O gene cp foi amplificado via RT-PCR utilizando oligonucleotídeos específicos, a partir de RNA viral extraído de preparações virais concentradas. O fragmento amplificado foi clonado em pBLUESCRIPT KS+ e completamente seqüenciado para confirmação de sua identidade e integridade. Em seguida, o fragmento foi subclonado no vetor de expressão pRSET-A. Plasmídeos recombinantes foram utilizados para a expressão da proteína capsidial em E. coli BL21::DE3. A proteína foi purificada por meio de cromatografia de afinidade em coluna de Ni+-NTA, a partir de proteínas totais extraídas de E. coli. Uma vez purificada, a proteína foi quantificada e utilizada para imunização dos coelhos. O anti-soro foi testado quanto a sua especificidade e sensibilidade em testes de Western blot, DAS-ELISA, imunodifusão e ELISA indireto. Todos os testes demonstraram que o anti-soro produzido a partir da expressão in vitro da proteína capsidial é altamente específico para a detecção do WMV em extratos foliares, não tendo sido observada nenhuma reação heteróloga interespecífica.

Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 702-702 ◽  
Author(s):  
I. Malandraki ◽  
N. Vassilakos ◽  
C. Xanthis ◽  
G. Kontosfiris ◽  
N. I. Katis ◽  
...  

In the summer of 2012, zucchini (Cucurbita pepo L.) plants of F1 hybrid Rigas showing very severe malformation and blisters in leaves and fruit were observed in the prefectures of Ilia and Messinia, Peloponnese, southwestern Greece. Over 100 samples were collected and only a few were found by double antibody sandwich (DAS)-ELISA to be singly or mixed infected with the commonly encountered Cucumber mosaic virus (CMV, genus Cucumovirus), Zucchini yellow mosaic virus (ZYMV, genus Potyvirus), and Watermelon mosaic virus (WMV, genus Potyvirus), to which Rigas is known to be tolerant. All affected plants were also tested by DAS-ELISA and RT-PCR (2) for the presence of Moroccan watermelon mosaic virus (MWMV; genus Potyvirus), a virus not previously reported in Greece, and were consistently found positive by both methods. Sap from plants in which MWMV was solely detected was used to mechanically inoculate Chenopodium quinoa Willd. and cucurbit species (zucchini, cucumber, melon, and watermelon). C. quinoa produced chlorotic local lesions, while cucurbits showed very severe mosaic and malformation of leaves. Zucchini plants of F1 hybrids Rigas, Golden (tolerant to WMV and ZYMV), and Elion (not exhibiting any tolerance) grown in a screenhouse produced equivalent severe symptoms on leaves and fruits. Furthermore, transmission experiments in a non-persistent manner using a clone of Myzus persicae Sulz. and zucchini plants of F1 hybrid Boreas as donor and test plants were carried out. Ten plants were used in each experiment (one aphid/plant) and this was repeated five times (50 plants in total). The transmission rate was high ranging from 75 to 90%. RT-PCR obtained amplicons of 627 bp were subjected to direct sequencing (GenBank Accession No KF772944), which revealed 99% sequence identity to the corresponding region of a MWMV Tunisian isolate (EF579955). In 2013, in addition to zucchini plants found MWMV positive, watermelon (Citrullus lanatus Thunb.) plants from the same region of Peloponnese showing leaf malformation and mosaic symptoms were found MWMV positive (4/30) by DAS-ELISA and RT-PCR, revealing the virus establishment and further spread. In the Mediterranean basin, the virus has already been reported in Morocco, Italy, France, Spain, Tunisia, and Algeria, where it has emerged recently from a common source, has quickly become established through rapid dissemination and is considered as an important emerging threat (4). Isolates from these countries, including the present one from Greece, are very closely molecularly related to each other, contrary to isolates from sub-Saharan Africa (South Africa, Sudan, Congo, Zimbabwe, Niger, Cameroon, Nigeria) that are much more divergent (1,3). To our knowledge, this is the first report of MWMV in Greece. References: (1) H. Lecoq et al. Plant Dis. 85:547, 2001. (2) H. Lecoq et al. New Dis. Rep. 16:19, 2007. (3) A. T. Owolabi et al. Int. J. Virol. 8:258, 2012. (4) S. Yakoubi et al. Arch. Virol. 153:775, 2008.


2021 ◽  
Vol 39 (1) ◽  
pp. 47-54
Author(s):  
Ahmad Mouhanna ◽  
◽  
Oos Ali Hasan ◽  
Hind Naaman Harhoush Al- Obaidi ◽  
◽  
...  

Mouhanna, A.M., A.A. Ali Hasan and H.N.H. Alobaidi. 2021. Detection and Molecular Characterization of Watermelon Mosaic Virus (WMV) Spread Along the Syrian Coast. Arab Journal of Plant Protection, 39(1): 47-54. Identification of local isolates of Watermelon mosaic virus (WMV) was investigated using serological and molecular methods. A total of 293 leaf samples from watermelon, zucchini, pumpkin, cucumber, pepper, beans and potato, with symptoms suggestive of virus infection, were collected from fields in two Syrian governorates (Latakia, Tartus) along the Syrian coast. DAS-ELISA tests revealed the presence of WMV in watermelon, zucchini, pumpkin and cucumber samples, with an average relative incidence of 36.95, 26.31, 29.27 and 37.70%, respectively. The infection of pepper with Watermelon mosaic virus was reported for the first time in Syria, with an average relative incidence of 2.94%. WMV was not detected in potato and beans, and these results were confirmed by RT-PCR. The local WMV isolate Cu4 was grouped with an Iranian isolate [EU660584.1] with 98.9% sequence identity. A Turkish isolate [EU660579] was grouped with local WMV isolate Wa2 with 98.3% sequence identity. Furthermore, two local isolates Zu6 and Cu8 represented one sub-group with 99.3% sequence identity. Keywords: Watermelon mosaic virus, DAS-ELISA, RT-PCR, CI, Phylogenetic Tree.


2010 ◽  
Vol 40 (11) ◽  
pp. 2385-2388 ◽  
Author(s):  
Marcos Fernando Basso ◽  
Thor Vinícius Martins Fajardo ◽  
Marcelo Eiras ◽  
Ricardo Antônio Ayub ◽  
Osmar Nickel

O Rupestris stem pitting-associated virus (RSPaV) é o agente causal das caneluras do lenho da videira. Este trabalho teve como objetivo produzir antissoro policlonal a partir da proteína capsidial (CP) recombinante do RSPaV e avaliar a sua especificidade e sensibilidade. O gene da CP do RSPaV, com 780pb, foi previamente caracterizado. Esse gene foi subclonado no sítio de restrição EcoRI, no vetor de expressão pRSET-B e o plasmídeo recombinante foi utilizado para induzir a expressão da CP em Escherichia coli. A CP, ligada a uma cauda de seis histidinas, foi purificada por meio de cromatografia de afinidade em coluna de Ni-NTA a partir do extrato de proteínas totais extraídas de E. coli. A identidade da proteína purificada foi confirmada em SDS-PAGE e Western blot, utilizando-se anticorpos comerciais contra a cauda de seis histidinas. A CP recombinante expressada in vitro apresentou massa molecular de cerca de 31kDa. A proteína purificada foi quantificada e 2,55mg foram utilizados para a imunização de um coelho. O antissoro policlonal obtido reagiu com diferentes isolados deste vírus, extraídos de videiras em ELISA indireto.


2020 ◽  
Vol 24 (19) ◽  
pp. 2272-2282
Author(s):  
Vu Ngoc Toan ◽  
Nguyen Minh Tri ◽  
Nguyen Dinh Thanh

Several 6- and 7-alkoxy-2-oxo-2H-chromene-4-carbaldehydes were prepared from corresponding alkyl ethers of 6- and 7-hydroxy-4-methyl-2-oxo-2H-chromen-2-ones by oxidation using selenium dioxide. 6- and 7-Alkoxy-4-methyl-2H-chromenes were obtained with yields of 57-85%. Corresponding 4-carbaldehyde derivatives were prepared with yields of 41-67%. Thiosemicarbazones of these aldehydes with D-galactose moiety were synthesized by reaction of these aldehydes with N-(2,3,4,6-tetra-O-acetyl-β-Dgalactopyranosyl) thiosemicarbazide with yields of 62-74%. These thiosemicarbazones were screened for their antibacterial and antifungal activities in vitro against bacteria, such as Staphylococcus aureus, Escherichia coli, and fungi, such as Aspergillus niger, Candida albicans. Several compounds exhibited strong inhibitory activity with MIC values of 0.78- 1.56 μM, including 8a (against S. aureus, E. coli, and C. albicans), 8d (against E. coli and A. niger), 9a (against S. aureus), and 9c (against S. aureus and C. albicans).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaitlin S. Witherell ◽  
Jason Price ◽  
Ashok D. Bandaranayake ◽  
James Olson ◽  
Douglas R. Call

AbstractMultidrug-resistant bacteria are a growing global concern, and with increasingly prevalent resistance to last line antibiotics such as colistin, it is imperative that alternative treatment options are identified. Herein we investigated the mechanism of action of a novel antimicrobial peptide (CDP-B11) and its effectiveness against multidrug-resistant bacteria including Escherichia coli #0346, which harbors multiple antibiotic-resistance genes, including mobilized colistin resistance gene (mcr-1). Bacterial membrane potential and membrane integrity assays, measured by flow cytometry, were used to test membrane disruption. Bacterial growth inhibition assays and time to kill assays measured the effectiveness of CDP-B11 alone and in combination with colistin against E. coli #0346 and other bacteria. Hemolysis assays were used to quantify the hemolytic effects of CDP-B11 alone and in combination with colistin. Findings show CDP-B11 disrupts the outer membrane of E. coli #0346. CDP-B11 with colistin inhibits the growth of E. coli #0346 at ≥ 10× lower colistin concentrations compared to colistin alone in Mueller–Hinton media and M9 media. Growth is significantly inhibited in other clinically relevant strains, such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. In rich media and minimal media, the drug combination kills bacteria at a lower colistin concentration (1.25 μg/mL) compared to colistin alone (2.5 μg/mL). In minimal media, the combination is bactericidal with killing accelerated by up to 2 h compared to colistin alone. Importantly, no significant red blood hemolysis is evident for CDP-B11 alone or in combination with colistin. The characteristics of CDP-B11 presented here indicate that it can be used as a potential monotherapy or as combination therapy with colistin for the treatment of multidrug-resistant infections, including colistin-resistant infections.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiaoyu Sun ◽  
Shunxiong Tang ◽  
Binbin Hou ◽  
Zhijun Duan ◽  
Zhen Liu ◽  
...  

Abstract Background Portal hypertension (PH) is the main cause of complications and death in liver cirrhosis. The effect of oral administration of octreotide (OCT), a drug that reduces PH by the constriction of mesenteric arteries, is limited by a remarkable intestinal first-pass elimination. Methods The bile duct ligation (BDL) was used in rats to induce liver cirrhosis with PH to examine the kinetics and molecular factors such as P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2) and cytochrome P450 3A4 (CYP3A4) influencing the intestinal OCT absorption via in situ and in vitro experiments on jejunal segments, transportation experiments on Caco-2 cells and experiments using intestinal microsomes and recombinant human CYP3A4. Moreover, RT-PCR, western blot, and immunohistochemistry were performed. Results Both in situ and in vitro experiments in jejunal segments showed that intestinal OCT absorption in both control and PH rats was largely controlled by P-gp and, to a lesser extent, by MRP2. OCT transport mediated by P-gp and MRP2 was demonstrated on Caco-2 cells. The results of RT-PCR, western blot, and immunohistochemistry suggested that impaired OCT absorption in PH was in part due to the jejunal upregulation of these two transporters. The use of intestinal microsomes and recombinant human CYP3A4 revealed that CYP3A4 metabolized OCT, and its upregulation in PH likely contributed to impaired drug absorption. Conclusions Inhibition of P-gp, MRP2, and CYP3A4 might represent a valid option for decreasing intestinal first-pass effects on orally administered OCT, thereby increasing its bioavailability to alleviate PH in patients with cirrhosis.


1987 ◽  
Vol 248 (1) ◽  
pp. 43-51 ◽  
Author(s):  
J Charlier ◽  
R Sanchez

In contrast with most aminoacyl-tRNA synthetases, the lysyl-tRNA synthetase of Escherichia coli is coded for by two genes, the normal lysS gene and the inducible lysU gene. During its purification from E. coli K12, lysyl-tRNA synthetase was monitored by its aminoacylation and adenosine(5′)tetraphospho(5′)adenosine (Ap4A) synthesis activities. Ap4A synthesis was measured by a new assay using DEAE-cellulose filters. The heterogeneity of lysyl-tRNA synthetase (LysRS) was revealed on hydroxyapatite; we focused on the first peak, LysRS1, because of its higher Ap4A/lysyl-tRNA activity ratio at that stage. Additional differences between LysRS1 and LysRS2 (major peak on hydroxyapatite) were collected. LysRS1 was eluted from phosphocellulose in the presence of the substrates, whereas LysRS2 was not. Phosphocellulose chromatography was used to show the increase of LysRS1 in cells submitted to heat shock. Also, the Mg2+ optimum in the Ap4A-synthesis reaction is much higher for LysRS1. LysRS1 showed a higher thermostability, which was specifically enhanced by Zn2+. These results in vivo and in vitro strongly suggest that LysRS1 is the heat-inducible lysU-gene product.


mBio ◽  
2014 ◽  
Vol 5 (3) ◽  
Author(s):  
Christopher W. Lennon ◽  
Kimberly C. Lemmer ◽  
Jessica L. Irons ◽  
Max I. Sellman ◽  
Timothy J. Donohue ◽  
...  

ABSTRACTDksA is a global regulatory protein that, together with the alarmone ppGpp, is required for the “stringent response” to nutrient starvation in the gammaproteobacteriumEscherichia coliand for more moderate shifts between growth conditions. DksA modulates the expression of hundreds of genes, directly or indirectly. Mutants lacking a DksA homolog exhibit pleiotropic phenotypes in other gammaproteobacteria as well. Here we analyzed the DksA homolog RSP2654 in the more distantly relatedRhodobacter sphaeroides, an alphaproteobacterium. RSP2654 is 42% identical and similar in length toE. coliDksA but lacks the Zn finger motif of theE. coliDksA globular domain. Deletion of the RSP2654 gene results in defects in photosynthetic growth, impaired utilization of amino acids, and an increase in fatty acid content. RSP2654 complements the growth and regulatory defects of anE. colistrain lacking thedksAgene and modulates transcriptionin vitrowithE. coliRNA polymerase (RNAP) similarly toE. coliDksA. RSP2654 reduces RNAP-promoter complex stabilityin vitrowith RNAPs fromE. coliorR. sphaeroides, alone and synergistically with ppGpp, suggesting that even though it has limited sequence identity toE. coliDksA (DksAEc), it functions in a mechanistically similar manner. We therefore designate the RSP2654 protein DksARsp. Our work suggests that DksARsphas distinct and important physiological roles in alphaproteobacteria and will be useful for understanding structure-function relationships in DksA and the mechanism of synergy between DksA and ppGpp.IMPORTANCEThe role of DksA has been analyzed primarily in the gammaproteobacteria, in which it is best understood for its role in control of the synthesis of the translation apparatus and amino acid biosynthesis. Our work suggests that DksA plays distinct and important physiological roles in alphaproteobacteria, including the control of photosynthesis inRhodobacter sphaeroides. The study of DksARsp, should be useful for understanding structure-function relationships in the protein, including those that play a role in the little-understood synergy between DksA and ppGpp.


1989 ◽  
Vol 3 (2) ◽  
pp. 105-112 ◽  
Author(s):  
T. S. Grewal ◽  
P. J. Lowry ◽  
D. Savva

ABSTRACT A large portion of the human pro-opiomelanocortin (POMC) peptide corresponding to amino acid residues 59–241 has been cloned and expressed in Escherichia coli. A 1·0 kb DNA fragment encoding this peptide was cloned into the expression vectors pUC8 and pUR291. Plasmid pJMBG51 (a pUC8 recombinant) was found to direct the expression of a 24 kDa peptide. The recombinant pUR291 (pJMBG52) was shown to produce a β-galactosidase fusion protein of 140 kDa. Western blot analysis showed that both the 24 kDa and 140 kDa peptides are recognized by antibodies raised against POMC-derived peptides. The β-galactosidase fusion protein has been partially purified from crude E. coli cell lysates using affinity chromatography on p-aminobenzyl-1-thio-β-d-galactopyranoside agarose.


2005 ◽  
Vol 71 (7) ◽  
pp. 3468-3474 ◽  
Author(s):  
Gyeong Tae Eom ◽  
Jae Kwang Song ◽  
Jung Hoon Ahn ◽  
Yeon Soo Seo ◽  
Joon Shick Rhee

ABSTRACT The ABC transporter (TliDEF) from Pseudomonas fluorescens SIK W1, which mediated the secretion of a thermostable lipase (TliA) into the extracellular space in Escherichia coli, was engineered using directed evolution (error-prone PCR) to improve its secretion efficiency. TliD mutants with increased secretion efficiency were identified by coexpressing the mutated tliD library with the wild-type tliA lipase in E. coli and by screening the library with a tributyrin-emulsified indicator plate assay and a microtiter plate-based assay. Four selected mutants from one round of error-prone PCR mutagenesis, T6, T8, T24, and T35, showed 3.2-, 2.6-, 2.9-, and 3.0-fold increases in the level of secretion of TliA lipase, respectively, but had almost the same level of expression of TliD in the membrane as the strain with the wild-type TliDEF transporter. These results indicated that the improved secretion of TliA lipase was mediated by the transporter mutations. Each mutant had a single amino acid change in the predicted cytoplasmic regions in the membrane domain of TliD, implying that the corresponding region of TliD was important for the improved and successful secretion of the target protein. We therefore concluded that the efficiency of secretion of a heterologous protein in E. coli can be enhanced by in vitro engineering of the ABC transporter.


Sign in / Sign up

Export Citation Format

Share Document